Electronic Supplementary Information

Quinoxaline: a new directing group for ortho $\mathbf{C}-\mathbf{H}$ alkenylation / intramolecular ortho $\mathbf{C}-\mathbf{H}$ cycloamination under open air leading to bioactive polynuclear N-heteroarenes
Rajnikanth Sunke, ${ }^{\text {a }}$ Vimal Kumar, ${ }^{\text {b }}$ E. V. Venkat Shivaji Ramarao, ${ }^{\text {a }}$ Ramudu Bankala, ${ }^{\text {a }}$ Kishore
V. L. Parsa ${ }^{\mathrm{a}}$ and Manojit $\mathrm{Pal}^{\mathrm{a}, *}$
E-mail: manojitpal@rediffmail.com

Table of content Page
General Methods 2
General Procedure for 3a-f 2-3
Typical Procedures for $\mathbf{3 g} \boldsymbol{\&} \mathbf{5 a}$ 3
Analytical data of $\mathbf{5 a - 5 q}$ 8-18
General procedure for the Ru-catalyzed direct ortho C-H alkenylation 18
General Procedure for $\mathbf{6 a - d}$ 19-20
Analytical data of 6a-d 21-23
References 23
Pharmacology 23

Chemistry

General methods: Unless stated otherwise, reactions were performed under nitrogen atmosphere using oven dried glassware. Reactions were monitored by thin layer chromatography (TLC) on silica gel plates (60 F 254), visualizing with ultraviolet light or iodine spray. Flash chromatography was performed on silica gel (230-400 mesh) using distilled hexane, ethyl acetate. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recodred in CDCl_{3} or DMSO- d_{6} solution by using 400 or 100 MHz spectrometers, respectively. Proton chemical shifts (δ) are relative to tetramethylsilane (TMS, $\delta=0.00$) as internal standard and expressed in ppm. Spin multiplicities are given as s (singlet), d (doublet), dd (doublet of doublet), td (triplet of doublet), t (triplet) and m (multiplet) as well as b (broad). Coupling constants (J) are given in hertz. MS spectra were obtained on a Agilent 6430 series Triple Quard LC-MS / MS spectrometer. Melting points (mp) were by using Buchi B-540 melting point apparatus and are uncorrected. Chromatographic purity by HPLC (Agilent 1200 series Chem Station software) was determined by using area normalization method and the condition specified in each case: column, mobile phase (range used), flow rate, detection wavelength, and retention times.

General Procedure for the preparation of 3-chloro- N-aryl substituted quinoxalin-2amine (3a-f) ${ }^{1}$

A mixture of 2,3-dichloroquinoxaline $\mathbf{1}(1.0 \mathrm{mmol})$, an appropriate amine $\mathbf{2}(1.0 \mathrm{mmol})$ and $\mathrm{AlCl}_{3}(1.25 \mathrm{mmol})$ in 1,2-dichloroethane $(5 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ for $10-12 \mathrm{~h}$ under a nitrogen atmosphere. After completion of the reaction, the mixture was cooled to room temperature, poured into ice-cold water $(15 \mathrm{~mL})$, stirred for 10 min and then extracted with ethylacetate $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with cold water $(2 \times 10$ mL), brine (4 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue obtained was purified by column chromatography on silica gel (230-400 mesh) using
ethylacetate/hexane to give the desired product 3a-f.

Typical procedure for the preparation of 2-(p-tolyloxy)quinoline-3-carbaldehyde (3g) ${ }^{\mathbf{2}}$

A100 mL round bottomed flask, fitted with a reflux condenser, was charged with a mixture of 2-chloro-3-formylquinoline $\mathbf{1 g}(1 \mathrm{mmol})$, phenol $\mathbf{2 g}(1 \mathrm{mmol})$, anhydrous potassium carbonate (2 mmol) and dimethyl formamide (5 mL). The mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 4 h and the progress of the reaction was monitored by TLC. After the completion of reaction, the reaction mixture was cooled to room temperature and then poured into chilled water (50 mL) with continuous stirring followed by neutralization with 1.5 N HCl until $\mathrm{pH} \sim 7$ resulted. The solid mass separated was collected by filtration, washed well with water, dried and crystallized from ethylacetate to give the title compound.

Typical procedure for the preparation of (E)-ethyl 3-(2-((3-chloroquinoxalin-2-yl)amino)-5methoxyphenyl)acrylate (5a)

A mixture of 3-chloro- N-(4-methoxyphenyl)quinoxalin-2-amine 3a $(0.350 \mathrm{mmol}$), ethyl acrylate $4 \mathbf{a}(0.526 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(0.526 \mathrm{mmol})$, TFA $(0.42 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}$ $(2.5 \mathrm{~mL})$ was heated at $60^{\circ} \mathrm{C}$ in air for 12 h . The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was cooled to RT, diluted with ethyl acetate (15 mL) and passed through celite. The resulting solution was washed with water ($3 \times 15 \mathrm{~mL}$) followed by brine solution (25 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated
under reduced pressure. The residue was purified by column chromatography using ethyl acetate-hexane to give desired compound 5a.

Table S-1: synthesis of compound 5. ${ }^{\text {a }}$

Entry

4	 3b	4a		75
5	3b	4b	 5e	80
6	3b	4c	 $\mathbf{5 f}$	62
7	 3c	4a		77
8	3c	4b		71

94

15		4b		55
16		4a	 50	68
17	3g	4b	 5p	72
18	3g	4c	 $\mathbf{5 q}$	61

${ }^{\text {a }}$ All the reactions are carried out using compound $\mathbf{3}(1 \mathrm{mmol})$, alkene $\mathbf{4}(1.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(5$ $\mathrm{mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(1.5 \mathrm{mmol})$ and TFA $(1.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.5 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$, under air. ${ }^{\mathrm{b}}$ Isolated yield.

Yield: 84%; Light yellow; mp: 117-179 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.2$ ($10 \% \mathrm{EtOAc} / n$-hexane); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.89(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}$, $1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.46(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): 166.4, 157.3, 146.0, 140.4, 139.4, 137.6, 137.3, 130.2, 130.0, 129.8, $127.8,126.5$ (2C), 126.0, 120.9, 116.8, 111.5, 60.6, 55.5, 14.1; MS (ES mass): 384.1 (M+1); HPLC: 98.8%, Column: Symmetry C-18 $75 * 4.6 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$, mobile phase A: 0.1% TFA in water, mobile phase B: $\mathrm{CH}_{3} \mathrm{CN}(\mathrm{T} / \% \mathrm{~B}): 0 / 20,0.5 / 50,2 / 95,8 / 95,10 / 20,12 / 20$; flow rate: 1.0 $\mathrm{mL} / \mathrm{min}$; Diluent: ACN: WATER (90:10); UV 260.0 nm , retention time 3.8 min .

(E)-Ethyl 3-(2-((3-chloroquinoxalin-2-yl)amino)-5-methoxyphenyl)acrylate (5b)

Compound 5b was synthesized from $\mathbf{3 a}$ following a procedure similar to that of compound $\mathbf{5 a}$ Yield: 82%; Light yellow; mp: $156-158{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.2$ ($10 \% \mathrm{EtOAc} / n$-hexane); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.90-7.84(\mathrm{~m}, 3 \mathrm{H}), 7.69-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 1 \mathrm{H})$, $7.23(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.89(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 166.8, 157.3, 146.1, 140.5, 139.7, $137.6,137.3,130.2,129.8,127.8,126.6,126.5,126.1,120.5,116.8,111.6,109.9,55.5,51.7$; MS (ES mass): 370.0 (M+1); HPLC: 98.3%, Column: Symmetry C-18 $75 * 4.6 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$, mobile
phase A: 0.1 \% TFA in water, mobile phase B: $\mathrm{CH}_{3} \mathrm{CN}(\mathrm{T} / \% \mathrm{~B}): 0 / 20,3 / 20,8 / 40,15 / 95,20 / 95$, 25/20, 30/20; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; Diluent: ACN: WATER (90:10); UV 255.0 nm , retention time 3.6 min .

(E)-tert-butyl 3-(2-((3-chloroquinoxalin-2-yl)amino)-5-methoxyphenyl)acrylate (5c)

Compound $\mathbf{5 c}$ was synthesized from 3a following a procedure similar to that of compound 5a
Yield: 67%; Light yellow; mp: $115-117{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.2$ ($10 \% \mathrm{EtOAc} / n$-hexane); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-$ $7.67(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ (dd, $J=8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 165.6, 157.2, 146.0, 140.5, 138.2, 137.6, 137.2, 130.2, 130.0, 129.7, 127.8, 126.5, 126.3, 126.0, 122.8, 116.6, 111.4, 80.7, 55.5, 28.0; MS (ES mass): 412.1 (M+1); HPLC: 98.7\%, Column: Symmetry C-18 $75 * 4.6 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$, mobile phase A: 0.1% TFA in water, mobile phase $\mathrm{B}: \mathrm{CH}_{3} \mathrm{CN}(\mathrm{T} / \% \mathrm{~B}): 0 / 20,0.5 / 50,2 / 95,8 / 95,10 / 20,12 / 20$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; Diluent: ACN: WATER (90:10); UV 260.0 nm , retention time 4.1 min .

(E)-Ethyl 3-(2-((3-chloroquinoxalin-2-yl)amino)-5-methylphenyl)acrylate (5d)

Compound $\mathbf{5 d}$ was synthesized from $\mathbf{3 b}$ following a procedure similar to that of compound $\mathbf{5 a}$

Yield: 75%; Light yellow; mp: $129-131{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.2$ ($10 \% \mathrm{EtOAc} / n$-hexane); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 166.5, 145.6, 140.4, 139.4 (2C), 137.7, 137.3, 135.1, 134.2, $131.5,130.3,128.0,127.8,126.6,126.2,124.0,120.8,60.5,21.0,14.2 ;$ MS (ES mass): 368.1 (M+1); HPLC: 95.0%, Column: Symmetry C-18 $75 * 4.6 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$, mobile phase A: 0.1% TFA in water, mobile phase $\mathrm{B}: \mathrm{CH}_{3} \mathrm{CN}$ (T/\%B): $0 / 10,2 / 10,10 / 95,20 / 95,22 / 10,25 / 10$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; Diluent: ACN: WATER (90:10); UV 260.0 nm , retention time 4.0 min .

(E)-Methyl 3-(2-((3-chloroquinoxalin-2-yl)amino)-5-methylphenyl)acrylate (5e)

Compound $\mathbf{5 e}$ was synthesized from $\mathbf{3 b}$ following a procedure similar to that of compound $\mathbf{5 a}$ Yield: 80%; Light yellow; mp: $168-170{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.2$ (10% EtOAc/ n-hexane); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.70$ $(\mathrm{m}, 1 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 166.9, 145.6, 140.3, 139.7, 137.7, 137.3, 135.1, 134.2, 131.5, 130.3, 128.0, 127.8 (2C), 126.5, 126.2, 124.0, 120.2, 51.7, 20.9; MS (ES mass): 354.1 (M+1); HPLC: 99.9\%, Column: Symmetry C-18 75 * 4.6 mm , $3.5 \mu \mathrm{~m}$, mobile phase A: 0.1% TFA in water, mobile phase $\mathrm{B}: \mathrm{CH}_{3} \mathrm{CN}$ (T/\%B): 0/20, 0.5/20, 2/95, 10/95, 10.5/95, 12/20; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; Diluent: ACN: WATER (90:10); UV 230.0 nm , retention time 3.7 min .

(E)-tert-butyl 3-(2-((3-chloroquinoxalin-2-yl)amino)-5-methylphenyl)acrylate (5f)

Compound $\mathbf{5 f}$ was synthesized from $\mathbf{3 b}$ following a procedure similar to that of compound $\mathbf{5 a}$ Yield: 62%; Light yellow; mp: 112-114 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.2$ ($10 \% \mathrm{EtOAc} / n$-hexane); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-$ $7.71(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.39(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 165.7, 145.6, 140.4, 138.2, 137.2, 134.9, 134.0, 131.2, 130.2, 127.8 (2C), 127.7, 126.5, 126.1, 123.7, 122.6, 120.0, 80.6, 28.0, 20.9; MS (ES mass): 396.1 (M+1); HPLC: 98.3\%, Column: Symmetry C-18 75 * 4.6 $\mathrm{mm}, 3.5 \mu \mathrm{~m}$, mobile phase $\mathrm{A}: 0.1 \%$ TFA in water, mobile phase $\mathrm{B}: \mathrm{CH}_{3} \mathrm{CN}(\mathrm{T} / \% \mathrm{~B}): 0 / 20$, 0.5/20, 2/95, 8/95, 10/20, 12/20; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; Diluent: ACN: WATER (90:10); UV 265.0 nm , retention time 3.1 min .

(E)-Ethyl 3-(5-chloro-2-((3-chloroquinoxalin-2-yl)amino)phenyl)acrylate (5g)

Compound $\mathbf{5 g}$ was synthesized from $\mathbf{3 c}$ following a procedure similar to that of compound $\mathbf{5 a}$ Yield: 77\%; Light yellow; mp: 207-209 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.2$ ($10 \% \mathrm{EtOAc} / n$-hexane); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.62(\mathrm{~m}$, $1 \mathrm{H}), 7.59(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.26(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 166.0, 145.0,
$140.0,137.8,137.6,137.4,135.2,130.5,130.4,130.3,128.9,127.9,127.3,126.7,126.5,124.6$, 122.5, 60.8, 14.1; MS (ES mass): 388.1 (M+1); HPLC: 95.5\%, Column: Symmetry C-18 75 * $4.6 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$, mobile phase A: $0.1 \% \mathrm{TFA}$ in water, mobile phase B: $\mathrm{CH}_{3} \mathrm{CN}(\mathrm{T} / \% \mathrm{~B}): 0 / 10$, 2/10, 10/95, 20/95, 22/10, 25/10; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; Diluent: ACN: WATER (90:10); UV 260.0 nm , retention time 4.2 min .

(E)-Methyl 3-(5-chloro-2-((3-chloroquinoxalin-2-yl)amino)phenyl)acrylate (5h)

Compound $\mathbf{5 h}$ was synthesized from $\mathbf{3 c}$ following a procedure similar to that of compound $\mathbf{5 a}$ Yield: 71%; Light yellow; mp: 201-203 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.2$ ($10 \% \mathrm{EtOAc} / n$-hexane); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.22(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.61$ (m, $1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, 1.56 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 166.4, 145.0, 140.0, 138.1, 137.6, 137.5, 135.2, $130.5,130.4,130.3,128.9,127.9,127.3,126.7,126.5,124.7,122.0,51.9$; MS (ES mass): 374.0 (M+1); HPLC: 97.8%, Column: Symmetry C-18 75 * $4.6 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$, mobile phase A: 0.1% TFA in water, mobile phase $\mathrm{B}: \mathrm{CH}_{3} \mathrm{CN}(\mathrm{T} / \% \mathrm{~B}): 0 / 20,0.5 / 20,2 / 95,8 / 95,10 / 20,12 / 20$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; Diluent: ACN: WATER (90:10); UV 260.0 nm , retention time 3.9 min .
(E)-tert-butyl 3-(5-chloro-2-((3-chloroquinoxalin-2-yl)amino)phenyl)acrylate (5i)

Compound $\mathbf{5 i}$ was synthesized from $\mathbf{3 c}$ following a procedure similar to that of compound $\mathbf{5 a}$
Yield: 59\%; Light yellow; mp: 147-149 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.2$ (10% EtOAc/ n-hexane); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.44(\mathrm{~m}, 3 \mathrm{H}), 6.43(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): 165.2, 145.0, 140.1, 137.6, 137.5, 136.6, 135.1, 130.5, 130.2 (2C), 128.9, 127.9, 127.2, 126.6 (2C), 124.5, 124.4, 81.1, 28.1; MS (ES mass): 416.1 (M+1); HPLC: 98.2%, Column: Symmetry C-18 $75 * 4.6 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$, mobile phase A: 0.1% TFA in water, mobile phase $\mathrm{B}: \mathrm{CH}_{3} \mathrm{CN}(\mathrm{T} / \% \mathrm{~B})$: $0 / 20,0.5 / 20,2 / 95,8 / 95,10 / 20,12 / 20$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; Diluent: ACN: WATER (90:10); UV 260.0 nm , retention time 4.7 min .
(E)-Ethyl 3-(5-bromo-2-((3-chloroquinoxalin-2-yl)amino)phenyl)acrylate (5j)

Compound $\mathbf{5 j}$ was synthesized from $\mathbf{3 d}$ following a procedure similar to that of compound $\mathbf{5 a}$
Yield: 78\%; Light yellow; mp: 129-131 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.2$ ($10 \% \mathrm{EtOAc} / n$-hexane); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{t}, J=8.0$ Hz, 1H), 7.59-7.57 (m, 1H), 7.54-7.49 (m, 1H), 7.46 (s, 1H), $6.48(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 166.0, 144.9, 140.0, 137.7, 137.6, 137.5, 135.7, 133.3, 130.6, 130.3, 129.1, 127.9, 126.7, 126.6, 124.6, 122.6, 117.8, 60.8, 14.2; MS (ES mass): 434.0 (M+3); HPLC: 95.9%, Column: Symmetry C-18 75 * 4.6 mm , $3.5 \mu \mathrm{~m}$, mobile phase A: 0.1% TFA in water, mobile phase $\mathrm{B}: \mathrm{CH}_{3} \mathrm{CN}$ (T/\%B): $0 / 10,2 / 10$, 10/95, 20/95, 22/10, 25/10; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; Diluent: ACN: WATER (90:10); UV 220.0 nm , retention time 4.7 min .

(E)-Methyl 3-(5-bromo-2-((3-chloroquinoxalin-2-yl)amino)phenyl)acrylate (5k)

Compound $\mathbf{5 k}$ was synthesized from $\mathbf{3 d}$ following a procedure similar to that of compound $\mathbf{5 a}$ Yield: 74%; Light yellow; mp: $125-127{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.2$ ($10 \% \mathrm{EtOAc} / n$-hexane); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.19(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.62(\mathrm{~m}$, $1 \mathrm{H}), 7.60-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 166.4, 144.9, 140.0, 138.0, 137.6, 137.4, 135.7, 133.3, 130.5, $130.3,129.1,127.9,126.7,126.6,124.7,122.1,117.8,51.9$; MS (ES mass): 420.0 (M+3); HPLC: 93.6%, Column: Symmetry C-18 $75 * 4.6 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$, mobile phase A: 0.1% TFA in water, mobile phase B: $\mathrm{CH}_{3} \mathrm{CN}(\mathrm{T} / \% \mathrm{~B}): 0 / 10,2 / 10,10 / 95,20 / 95,22 / 10,25 / 10$; flow rate: 1.0 $\mathrm{mL} / \mathrm{min}$; Diluent: ACN: WATER (90:10); UV 260.0 nm , retention time 4.0 min .

(E)-Ethyl 3-(2-((3-chloroquinoxalin-2-yl)amino)-5-fluorophenyl)acrylate (51)

Compound $5 \mathbf{1}$ was synthesized from $\mathbf{3 e}$ following a procedure similar to that of compound $\mathbf{5 a}$ Yield: 79%; Light yellow; mp: 177-179 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.2$ ($10 \% \mathrm{EtOAc} / n$-hexane) ${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.06(\mathrm{dd}, J=8.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.59$ $(\mathrm{m}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.35=7.32(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.25(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 166.0, 161.1 $(\mathrm{C}-\mathrm{F} J=244.5 \mathrm{~Hz}), 158.7,145.5,140.2,138.1,137.5(\mathrm{C}-\mathrm{F} J=7.8 \mathrm{~Hz}), 137.4,132.7$ (2C), 130.4, $130.2(\mathrm{C}-\mathrm{F} J=7.9 \mathrm{~Hz}), 130.1,127.8,126.5(\mathrm{C}-\mathrm{F} J=7.4 \mathrm{~Hz}), 126.4,126.3,126.2,122.1,117.6$ (C-F $J=22.7 \mathrm{~Hz}), 117.4,113.7(\mathrm{C}-\mathrm{F} J=23.2 \mathrm{~Hz}), 113.5,60.7,14.1$; MS (ES mass): 372.0 (M+1); HPLC: 99.7%, Column: Symmetry C-18 75 * $4.6 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$, mobile phase A: 0.1%

TFA in water, mobile phase $\mathrm{B}: \mathrm{CH}_{3} \mathrm{CN}(\mathrm{T} / \% \mathrm{~B}): 0 / 20,0.5 / 20,2 / 95,8 / 95,10 / 20,12 / 20$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; Diluent: ACN: WATER (90:10); UV 260.0 nm , retention time 3.8 min .

(E)-tert-butyl 3-(2-((3-chloroquinoxalin-2-yl)amino)-5-fluorophenyl)acrylate (5m)

Compound $\mathbf{5 m}$ was synthesized from $\mathbf{3 e}$ following a procedure similar to that of compound $\mathbf{5 a}$ Yield: 74%; Light yellow; mp: $167-169{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.2$ ($10 \% \mathrm{EtOAc} / n$-hexane); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.08(\mathrm{dd}, J=8.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.72-7.70 (m, 1H), 7.63-7.59 (m, 1H), 7.51-7.47 (m, 1H), $7.36(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=9.2,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $165.2,161.1(\mathrm{C}-\mathrm{F} J=244.1 \mathrm{~Hz}), 158.6,148.8,145.5,140.2,137.5,137.4,137.0,132.6$, 130.4, $130.2,127.8,126.5,126.3,126.2(\mathrm{C}-\mathrm{F} J=8.4 \mathrm{~Hz}), 126.1,124.0,117.4(\mathrm{C}-\mathrm{F} J=22.5 \mathrm{~Hz}), 117.1$, 113.6 (C-F $J=23.3 \mathrm{~Hz}$), 113.4, 109.9, 80.9, 28.0; MS (ES mass): 400.2 (M+1); HPLC: 99.7\%, Column: Symmetry C-18 $75 * 4.6 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$, mobile phase A: $0.1 \% \mathrm{TFA}$ in water, mobile phase B: $\mathrm{CH}_{3} \mathrm{CN}(\mathrm{T} / \% \mathrm{~B}): 0 / 20,0.5 / 20,2 / 95,8 / 95,10 / 20,12 / 20$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; Diluent: ACN: WATER (90:10); UV 220.0 nm , retention time 3.0 min .

(E)-Methyl 3-(2-((3-chloroquinoxalin-2-yl)amino)-3-methoxyphenyl)acrylate (5n)

Compound $\mathbf{5 n}$ was synthesized from $\mathbf{3 f}$ following a procedure similar to that of compound $\mathbf{5 a}$ Yield: 55%; Pale yellow; mp: 124-126 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.2$ ($10 \% \mathrm{EtOAc} / n$-hexane); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.85-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~m}$,
$1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.02-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, 3.63 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 166.4, 157.3, 146.0, 140.4, 139.4, 137.6, 137.3, $130.2,130.0,129.8,127.8,126.5$ (2C), 126.0, 120.9, 116.8, 111.5, 60.6, 55.5; MS (ES mass): 370.1 (M+1); HPLC: 99.9%, Column: Symmetry C-18 $75 * 4.6 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$, mobile phase A: 0.1 \% TFA in water, mobile phase B: $\mathrm{CH}_{3} \mathrm{CN}$ (T/\%B): 0/20, $0.5 / 20,2 / 95,8 / 95,10 / 20,12 / 20$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; Diluent: ACN: WATER (90:10); UV 220.0 nm , retention time 4.8 min .

(E)-Ethyl 3-(2-((3-formylquinolin-2-yl)oxy)-5-methylphenyl)acrylate (5o)

Compound $5 \mathbf{0}$ was synthesized from $\mathbf{3 g}$ following a procedure similar to that of compound $\mathbf{5 a}$ Yield: 68%; pink; mp: $160-162{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.2\left(10 \% \mathrm{EtOAc} / n\right.$-hexane); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 10.71(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) 7.71-$ $7.70(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.15(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): 188.5, 166.7, 160.4, 149.6, 148.5, 140.8, 138.5, 135.2, 132.7, 131.8, 129.6, 128.0, $127.8,127.2,125.8,125.2,122.9,120.0,119.7,60.4,20.9,14.2$; MS (ES mass): 362.1 (M+1); HPLC: 98.1%, Column: Symmetry C-18 $75 * 4.6 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$, mobile phase A: $0.1 \% \mathrm{TFA}$ in water, mobile phase B: $\mathrm{CH}_{3} \mathrm{CN}(\mathrm{T} / \% \mathrm{~B})$: $0 / 20,0.5 / 20,2 / 95,8 / 95,10 / 20$, 12/20; flow rate: 1.0 $\mathrm{mL} / \mathrm{min}$; Diluent: ACN: WATER (90:10); UV 220.0 nm , retention time 4.9 min .

(E)-Methyl 3-(2-((3-formylquinolin-2-yl)oxy)-5-methylphenyl)acrylate (5p)

Compound 5p was synthesized from $\mathbf{3 g}$ following a procedure similar to that of compound $\mathbf{5 a}$ Yield: 72%; white; mp: $136-138{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.2$ ($10 \% \mathrm{EtOAc} / n$-hexane); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 10.71(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ $(\mathrm{d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.49$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 188.5, 167.1, $160.4,149.6,148.5,140.8,138.8,135.3,132.7,131.9,129.6,128.1,127.8,127.2,125.8,125.2$, 122.9, 120.0, 119.3, 51.6, 20.9; MS (ES mass): 348.1 (M+1); HPLC: 96.1\%, Column: Symmetry C-18 $75 * 4.6 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$, mobile phase A: $0.1 \% \mathrm{TFA}$ in water, mobile phase B: $\mathrm{CH}_{3} \mathrm{CN}$ (T/\%B): 0/20, $0.5 / 20,2 / 95,8 / 95,10 / 20,12 / 20$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; Diluent: ACN: WATER (90:10); UV 260.0 nm , retention time 3.8 min .

(E)-tert-butyl 3-(2-((3-formylquinolin-2-yl)oxy)-5-methylphenyl)acrylateacrylate (5q)

Compound $\mathbf{5 q}$ was synthesized from $\mathbf{3 g}$ following a procedure similar to that of compound $\mathbf{5 a}$ Yield: 61%; Pink; mp: $126-127{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.2$ ($10 \% \mathrm{EtOAc} / n$-hexane); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 10.70(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ (d, $J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.40$ (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 188.5, 165.9, $160.4,149.5,148.5,140.7,137.4,135.1,132.6,131.6,129.9,129.5,127.8,127.3,125.7,125.1$,
122.9, 121.4, 119.9, 80.4, 28.0, 20.9; MS (ES mass): 388.0 (M-1); HPLC: 97.6%, Column: Symmetry C-18 $75 * 4.6 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$, mobile phase A: 0.1% TFA in water, mobile phase B: $\mathrm{CH}_{3} \mathrm{CN}$ (T/\%B): 0/20, $0.5 / 20,2 / 95,8 / 95,10 / 20,12 / 20$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; Diluent: ACN : WATER (90:10); UV 260.0 nm , retention time 4.2 min .

General procedure for the Ru-catalyzed direct ortho C-H alkenylation of 3a-b

To a mixture of $\left[\left\{\operatorname{RuCl}_{2}(\text { p-cymene })\right\}_{2}\right](0.04 \mathrm{mmol}, 4 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(0.20 \mathrm{mmol}, 20 \mathrm{~mol}$ $\%), \mathrm{Cu}(\mathrm{OAc})_{2}(0.30 \mathrm{mmol}, 30 \mathrm{~mol} \%)$ and 3-chloro- N -aryl quinoxalin-2-amine 3a-b (1.0 equiv), taken in a sealed tube (fitted with a septum) was added acrylate 4a-c (1.5 equiv) and then dichloroethane (3.0 mL) via a syringe under nitrogen. The mixture was allowed to stir for 5 min at room temperature. Then, the septum was taken off and the reaction mixture was stirred under an open air for an additional 10 min . The tube was covered with a screw cap and the reaction mixture was allowed to stir at $100^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction the mixture was cooled to room temperature, transferred to an RB flask and solvent was evaporated. The residue was diluted with ethylacetate (5 mL) and filtered through Celite. The filtrate was washed with water ($3 \times 15 \mathrm{~mL}$) followed by brine solution (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The residue obtained was purified by column chromatography on silica gel (230-400 mesh) using ethylacetate/hexane to give the desired product 5a-e.

Scheme S-1. The proposed reaction mechanism for Ru-catalyzed direct ortho C-H alkenylation of $\mathbf{3 a}-\mathbf{b}$.

General procedure for the preparation of (E)-Alkyl 3-(10-substituted-6-chlorobenzo[4,5]imidazo[1,2-a]quinoxalin-8-yl)acrylate (6a-d)

To a solution of $5(1.0 \mathrm{mmol})$ in acetonitrile $(5 \mathrm{~mL})$ was added PIDA $(1.5 \mathrm{mmol})$ and the solution was allowed to stirred at room temperature for 30 min . After completion of the reaction
(indicated by TLC), the mixture was extracted with ethylacetate ($3 \times 10 \mathrm{~mL}$). The combined organic phase was collected, washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using ethyl acetate-hexane to give desired compound 6.

Table S-2: Synthesis of compound $\mathbf{6}^{\text {a }}$
Entry

	5g	6d	

${ }^{\mathrm{a}}$ All the reactions are carried out using compound $\mathbf{5}(1 \mathrm{mmol})$, PIDA (1.5 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(2.5$ mL) at room temparature in 30 min , under air.
${ }^{\mathrm{b}}$ Isolated yield.
(E)-Ethyl 3-(6-chloro-10-fluorobenzo[4,5]imidazo[1,2-a]quinoxalin-8-yl)acrylate (6a)

Yield: 90%; white solid; mp: 221-223 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.2\left(10 \% \mathrm{EtOAc} / n\right.$-hexane); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 8.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14-8.08(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.79(\mathrm{~m}$, $1 \mathrm{H}), 7.68-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=9.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 166.8, 161.4 (C-F $J=$ $244.5 \mathrm{~Hz}), 159.0,144.7,139.2,138.7,138.6,134.5,131.3,131.2,130.6(\mathrm{C}-\mathrm{F} J=40.6 \mathrm{~Hz}), 130.2$, 129.7, 129.6, 128.9 (C-F $J=9.6 \mathrm{~Hz}$), 126.7, 124.3, 114.7 (C-F $J=25.6 \mathrm{~Hz}$), 114.4 (2C), 102.1(CF $J=29.0 \mathrm{~Hz}$), 101.8, 60.8, 14.3; MS (ES mass): 370.1 (M+1); HPLC: 97.4\%, Column: Symmetry C-18 $75 * 4.6 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$, mobile phase A: 0.1% TFA in water, mobile phase B: $\mathrm{CH}_{3} \mathrm{CN}(\mathrm{T} / \% \mathrm{~B}): 0 / 20,0.5 / 20,2 / 95,8 / 95,10 / 20,12 / 20$,; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; Diluent: ACN : WATER (90:10); UV 220.0 nm , retention time 4.8 min .

(E)-tert-butyl 3-(6-chloro-10-fluorobenzo[4,5]imidazo[1,2-a]quinoxalin-8-yl)acrylate (6b)

Yield: 85%; white solid; mp: $198-200{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.2\left(10 \%\right.$ EtOAc/ n-hexane) ; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 8.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dd}$, $J=8.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=9.8,1.9 \mathrm{~Hz}, 1 \mathrm{H})$,
7.32 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 166.1, 161.5, 159.0 (C-F J $=243.6 \mathrm{~Hz})$, 144.7, 139.3, 139.2, 137.6 (2C), 134.5, 130.5, 130.1, 128.9, 128.2, 126.6, 126.1, 114.4, 114.2, 101.8, 101.5 (C-F $J=28.9 \mathrm{~Hz}$), 80.9, 28.2; MS (ES mass): $398.0(\mathrm{M}+1)$; HPLC: 99.9%, Column: Symmetry C-18 $75 * 4.6 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$, mobile phase A: $0.1 \% \mathrm{TFA}$ in water, mobile phase B: $\mathrm{CH}_{3} \mathrm{CN}(\mathrm{T} / \% \mathrm{~B}): 0 / 20,0.5 / 20,2 / 95,8 / 95,10 / 20,12 / 20$, ; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; Diluent: ACN: WATER (90:10); UV 220.0 nm , retention time 4.8 min .

(E)-Ethyl 3-(10-bromo-6-chlorobenzo[4,5]imidazo[1,2-a]quinoxalin-8-yl)acrylate (6c)

Yield: 91%; white solid; mp: 209-211 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.2\left(10 \% \mathrm{EtOAc} / n\right.$-hexane) ; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 8.55(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.20-8.12(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.86-7.82(\mathrm{~m}$, $1 \mathrm{H}), 7.68(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 166.8, 144.6, 141.4, 139.2, 138.5, 134.6, 132.3, 131.0, 130.6, 130.3, 129.3, 128.8, 126.8, 124.4, 118.6, 117.9, 114.6, 60.7, 14.3; MS (ES mass): 431.9 (M+3); HPLC: 99.9%, Column: Symmetry C-18 $75 * 4.6 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$, mobile phase A: 0.1% TFA in water, mobile phase $\mathrm{B}: \mathrm{CH}_{3} \mathrm{CN}(\mathrm{T} / \% \mathrm{~B}): 0 / 20,0.5 / 20,2 / 95,8 / 95,10 / 20,12 / 20$,; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; Diluent: ACN: WATER (90:10); UV 220.0 nm , retention time 4.8 min .

(E)-Ethyl 3-(6,10-dichlorobenzo[4,5]imidazo[1,2-a]quinoxalin-8-yl)acrylate (6d)

Yield: 82%; white solid; mp: $185-187{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.2\left(10 \% \mathrm{EtOAc} / n\right.$-hexane); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 8.41-8.39(\mathrm{~m}, 2 \mathrm{H}), 8.21(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.82$
$(\mathrm{m}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 166.8, 144.7, 138.6, 134.6, 131.9, $131.2,130.6,130.3,129.8,129.4,126.8,126.7,125.8,125.7,124.4,114.9,114.6,60.7,14.3 ; \mathrm{MS}$ (ES mass): 385.9 (M+1); HPLC: 99.8%, Column: Symmetry C-18 $75 * 4.6 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$, mobile phase A: 0.1 \% TFA in water, mobile phase B: $\mathrm{CH}_{3} \mathrm{CN}(\mathrm{T} / \% \mathrm{~B}): 0 / 20,0.5 / 20,2 / 95,8 / 95,10 / 20$, 12/20,; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; Diluent: ACN: WATER (90:10); UV 220.0 nm , retention time 4.4 min .

References:

\author{

1. B. Prasad, K. S. Kumar, P. VijayaBabu, K. Anusha, D. Rambabu, A. Kandale, G. R.
}

Vanaja, A. M. Kalle and M. Pal, Tetrahedron Lett., 2012, 53, 6059.
2. D. C. Mungra, M. P. Patel, D. P. Rajani, and R. G. Patel, Eur. J. Med. Chem., 2011, 46, 4192.

Pharmacology

In vitro assay for PDE4B

Cells and Reagents: Sf9 cells were obtained from ATCC (Washington D.C., USA) and were routinely maintained in Grace's supplemented medium (Invitrogen) with 10% FBS. cAMP was purchased from SISCO Research Laboratories (Mumbai, India). PDElight HTS cAMP phosphodiesterase assay kit was procured from Lonza (Basel, Switzerland). PDE4B1 clone was procured from OriGene Technologies (Rockville, MD, USA). PDE4D2 enzyme was purchased from BPS Bioscience (San Diego, CA, USA).
PDE4B protein production and purification: PDE4B1 cDNA was sub-cloned into pFAST Bac HTB vector (Invitrogen) and transformed into DH10Bac (Invitrogen) competent cells. Recombinant bacmids were tested for integration by PCR analysis. Sf9 cells were transfected with bacmid using Lipofectamine 2000 (Invitrogen) according to manufacturer's instructions. Subsequently, P3 viral titer was amplified, cells were infected and 48 h post infection cells were lysed in lysis buffer (50 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.5,10 \mathrm{mM}$ 2-Mercaptoethanol, 1% protease inhibitor cocktail (Roche), 1 \% NP40). Recombinant His-tagged PDE4B protein was purified as previously described elsewhere (Wang et al., 1997). Briefly, lysate was centrifuged at 10,000 rpm for 10 min at $4^{\circ} \mathrm{C}$ and supernatant was collected. Supernatant was mixed with Ni-NTA resin
(GE Life Sciences) in a ratio of $4: 1(\mathrm{v} / \mathrm{v})$ and equilibrated with binding buffer (20 mM Tris- HCl $\mathrm{pH} 8.0,500 \mathrm{mM}-\mathrm{KCl}, 5 \mathrm{mM}$ imidazole, 10 mM 2-mercaptoethanol and 10% glycerol) in a ratio of $2: 1(\mathrm{v} / \mathrm{v})$ and mixed gently on rotary shaker for 1 hour at $4^{\circ} \mathrm{C}$. After incubation, lysate-NiNTA mixture was centrifuged at $4,500 \mathrm{rpm}$ for 5 min at $4^{\circ} \mathrm{C}$ and the supernatant was collected as the flow-through fraction. Resin was washed twice with wash buffer (20 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.5,1$ $\mathrm{M} \mathrm{KCl}, 10 \mathrm{mM}$ 2-Mercaptoethanol and 10% glycerol). Protein was eluted sequentially twice using elution buffers (Buffer I: 20 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.5,100 \mathrm{mM} \mathrm{KCl}, 250 \mathrm{mM}$ imidazole, 10 mM 2-mercaptoethanol, 10% glycerol, Buffer II: 20 mM Tris-HCl pH 8.5, $100 \mathrm{mM} \mathrm{KCl}, 500$ mM imidazole, 10 mM 2-mercaptoethanol, 10% glycerol). Eluates were collected in four fractions and analyzed by SDS-PAGE. Eluates containing PDE4B protein were pooled and stored at $-80^{\circ} \mathrm{C}$ in 50% glycerol until further use.

PDE4 enzymatic assay: The inhibition of PDE4 enzyme was measured using PDE light HTS cAMP phosphodiesterase assay kit (Lonza) according to manufacturer's recommendations. Briefly, 10 ng of in house purified PDE4B1 enzyme was pre-incubated either with DMSO (vehicle control) or compound for 15 min before incubation with the substrate cAMP $(5 \mu \mathrm{M})$ for 1 hour. The reaction was halted with stop solution and reaction mix was incubated with detection reagent for 10 minutes in dark. Luminescence values (RLUs) were measured by a Multilabel plate reader (Perklin Elmer 1420 Multilabel counter).The percentage of inhibition was calculated using the following formula:

$$
\% \text { inhibition }=\frac{(R L U \text { of vehicle control }- \text { RLU of inhibitior })}{R L U \text { of vehicle control }} X 100
$$

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

Fig. 2: ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 a}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

ppm (1)
IIII $\left.\right|_{1 I}$

Fig. 3: ${ }^{1} \mathrm{H}$ NMR spectra of compound $5 \mathbf{b}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig. 4: ${ }^{13} \mathrm{C}$ NMR spectra of compound $5 \mathbf{b}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Fig. 5: ${ }^{1} \mathrm{H}$ NMR spectra of compound $5 \mathrm{c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig.6: ${ }^{13} \mathrm{C}$ NMR spectra of compound $5 \mathrm{c}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Fig. 7: ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{5 d}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig. 8: ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 d}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Fig. 9: ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{5 e}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig. 10: ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 e}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Fig. 11: ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{5 f}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig. 12: ${ }^{13} \mathrm{C}$ NMR spectra of compound $5 \mathbf{f}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Fig. 13: ${ }^{1} \mathrm{H}$ NMR spectra of compound $5 \mathbf{g}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

nom (11)
Fig. 14: ${ }^{13} \mathrm{C}$ NMR spectra of compound $5 \mathrm{~g}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Fig. 15: ${ }^{1} \mathrm{H}$ NMR spectra of compound $5 \mathbf{h}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig. 16: ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 h}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Fig. 17: ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{5 i}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig. 18: ${ }^{13} \mathrm{C}$ NMR spectra of compound $5 \mathbf{i}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Fig. 19: ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{5 j}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig．20：${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 j}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Fig. 21: ${ }^{1} \mathrm{H}$ NMR spectra of compound $5 \mathbf{k}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig. 22: ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 k}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Fig. 23: ${ }^{1} \mathrm{H}$ NMR spectra of compound $5 \mathbf{5}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

N
8
8

Fig. 24: ${ }^{13} \mathrm{C}$ NMR spectra of compound $51\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

ppm (t1)

Fig. 25: ${ }^{1} \mathrm{H}$ NMR spectra of compound $5 \mathrm{~m}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig. 26: ${ }^{13} \mathrm{C}$ NMR spectra of compound $5 \mathrm{~m}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Fig. 27: ${ }^{1} \mathrm{H}$ NMR spectra of compound $5 \mathrm{n}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig. 28: ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 n}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Fig. 29: ${ }^{1} \mathrm{H}$ NMR spectra of compound $5 \mathbf{5}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig. 30: ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 o}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Fig. 31: ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{5 p}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig. 32: ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 p}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Fig. 33: ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{5 q}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$
Lzs'88ı

Fig. 34: ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 q}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

ppm (t1)

Fig. 35: ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{6 a}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig. 36: ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 a}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

ppm (t1)

Fig. 37: ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{6 b}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig. 38: ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 b}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Fig. 39: ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{6 c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig. 40: ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 c}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Fig. 41: 1D-NOE spectra of compound 6c

Fig. 42: ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{6 d}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig. 43: ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 d}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

SAMPLE INFORMATION			
Sample Name:	ILS-RAJ-P-OCH3-ET	Acquired By:	System
A R Number:	CM14K010	Sample Set Name:	251114_3
Vial:	35	Acq. Method Set:	MC
Injection \#:	1	Processing Method:	MC PROO
Injection Volume:	5.00 ul	Channel Name:	260.0 nm
Run Time:	12.0 Minutes	Proc. Chnl. Descr.:	PDA 260.0 nm
Date Acquired:	11/26/2014 3:12:54 AM IST		
Date Processed:	11/26/2014 3:28:29 PM IST		

Column: Symmetry C-18 75*4.6mm $3.5 \mu \mathrm{~m}$
Mobile phase: A) 0.1% TFA in water B) ACN
T/\%B: 0/20, 0.5/20, 2/95, 8/95, 10/20, 12/20
Flow: $1.0 \mathrm{ml} / \mathrm{min}$, Diluent: ACN: WATER (90:10)

	RT	Area	\% Area	Height
1	3.825	5252909	98.89	831020
2	4.373	59013	1.11	9387

Analysed By: Checked By:

Reported by User: System
Date Printed:
Report Method ID: 3574
Page: 1 of 1
3:34:24 PM Asia/Calcutta

SAMPLE			
Sample Name:	ILS-RAJ-S2-6F		
AR Number:	CM14L007		
Vial:	18	Acq Melt	161214
Injection \#:	1		
Injection Volume:	5.00 ul	Processing Method:	MC_PRO
Run Time:	12.0 Minutes	Channel Name:	255.0nm
Date Acquired:			
Date Processed:	12/16/2014 2:48:27 PM IST		

Column: Symmetry C-18 75*4.6mm 3.5 mm
Mobile phase: A) 0.1% TFA in water B) ACN
T/\%B: 0/20, 3/20, 8/40,15/95, 20/95, 25/20, 30/20
Flow: $1.0 \mathrm{ml} / \mathrm{min}$, Diluent: ACN

	RT	Area	\% Area	Height
1	3.686	5613755	98.33	890135
2	3.900	87188	1.53	13382
3	8.098	7873	0.14	955

Analysed By:

Checked By:

Reported by User: System
Report Method: CPRI@DRILS
Report Method ID: 3405
Page: 1 of 1

Project Name: DEC_2014
Date Printed:
12/17/2014
11:06:23 AM Asia/Calcutta

Sample ${ }^{\text {SAme }}$ SAPLE INFORMAT\|ON			
A R Number:	CM14K011	Acquired By:	
Vial:		Sample Set Name:	251114_3
Injection\#:	1	Acq. Method Set:	MC
Injection Volume:	5.00 ui	Processing Method:	MC PROO
Run Time:	12.0 Minutes	Channel Name:	260.0 nm
		Proc. Chnl. Descr.:	PDA 260.0 nm
Date Acquired:	11/26/2014 3:28:38 AM IST		
Date Processed:	11/26/2014 3:29:27 PM IST		

Column: Symmetry C-18 $75^{*} 4.6 \mathrm{~mm} 3.5 \mu \mathrm{~m}$ Mobile phase: A) 0.1% TFA in water B) ACN T/\%B: $0 / 20,0.5 / 20,2 / 95,8 / 95,10 / 20,12 / 20$
Flow: $1.0 \mathrm{ml} / \mathrm{min}$, Diluent: ACN: WATER (90:10)

な
0.40
$\begin{array}{cccccc}0.20 \\ 0.00 & & & & \\ 0.00 & 1.00 & 2.00 & 3.00 & 4.00 \\ 0\end{array}$ \qquad
6.00
Minutes

	RT	Area	\% Area	Height
1	3.772	34141	0.56	5165
2	3.884	16060	0.26	2764
3	4.139	6059169	98.76	952772
4	4.350	10733	0.17	2117
5	4.677	5209	0.08	795
6	5.190	5030	0.08	721
7	5.351	4872	0.08	727

Checked By:

Reported by User: System
Report Method: CPRI@DRILS
Report Method ID: 3574
Project Name: NOB_2014
Date Printed:
11/26/2014
3:36:26 PM Asia/Calcutta

SAMPLE			
Sample Name:	ILS-RAJ-S2-4F	Acquired By:	System
A R Number: Vial:	CM14K007	Sample Set Name:	241114
Injection\#:	1	Acq. Method Set:	MC
Injection Volume:	5.00 ul	Processing Method:	MC PRO
Run Time:	12.0 Minutes	Channel Name: Proc. Chnl. Descr.:	260.0 nm PDA 260.0 nm
Date Acquired:	11/24/2014 2:30:07 PMIST		
Date Processed:	11/24/2014 2:59:29 PM IST		

Column: Symmetry C-18 $75^{*} 4.6 \mathrm{~mm} 3.5 \mathrm{\mu m}$ Mobile phase: A) 0.1% TFA in water B) ACN T/\%B: 0/10, 2/10, 10/95, 20/95, 22/10, 25/10
Flow: $1.0 \mathrm{ml} / \mathrm{min}$, Diluent: ACN: WATER (80:20)
Flow. 1.0 ml min, Diluent: ACN: WATER (80:20)

	RT	Area	\% Area	Height
1	2.815	57583	1.42	9425
2	3.117	3980	0.10	1026
3	3.213	122312	3.01	20479
4	4.067	3855740	95.00	635411
5	4.266	8102	0.20	1550
6	4.452	10850	0.27	1955

Analysed By:
Checked By:

Report Method: CPRI@DRILS
Report Method ID: 3155
Page: 1 of 1

CPRI @ DRILS
HPLC ANALYSIS REPORT

隹

Signal 1: DAD1 B, Sig=230, 4 Ref=off

| \|Peak | | RT | Area | Area \% |
| :---: | :---: | :---: | :---: |
| \# I | [min] \| | | |
| 11 | 3.7051 | 2106.615। | 99.907 |
| 21 | 3.8911 | 1.9601 | 0.093 |

Analysed by :
Checked by :

Column: Symmetry C-18 75*4.6mm $3.5 \mu \mathrm{~m}$
Mobile phase. A) 0.1% TFA in water B) ACN
T/\%B. 0/20, 0.5/20, 2/95, 8/95, 10/20, 12/20
Flow: $1.0 \mathrm{ml} / \mathrm{min}$, Diluent: ACN: WATER ($90: 10$)

	RT	Area	\% Area	Height
1	3.147	9296297	98.39	1409602
2	3.496	98842	1.05	13267
3	3740	52976	0.56	8274

Analyzed By:
Checked By:

Reported by User: System
Report Method CPRI@DRILS
Date Printed:
Report Method ID: 5686
4/30/2015
Page: 1 of 1
software

Column: Symmetry C-1875*4.6mm $3.5 \mu \mathrm{~m}$ Mobile phase: A) 0.1% TFA in water B) ACN T/\%B: 0/10, 2/10, 10/95, 20/95, 22/10, 25/10
Flow: $1.0 \mathrm{ml} / \mathrm{min}$, Diluent: ACN: WATER (80:20)

	RT	Area	\% Area	Height
1	2.808	55335	1.60	9314
2	3.207	86969	2.52	14837
3	4.280	3301406	95.49	540398
4	4.433	8369	0.24	2010
5	4.574	5407	0.16	903

Analysed By:
Checked By:

Reported by User: System
Report Method: CPRI@DRILS
Report Method ID: 3109
Page: 1 of 1

SAMPLE INFORMATION			
Sample Name:	LLS-RAJ-P-CL-ME	Acquired By:	
AR Number:	CM14K014	Sample Set Name:	251114_3
Vial:	39	Acq. Method Set:	MC -
Injection \#:	1	Processing Method:	MC PROO
Injection Volume:	5.00 ul	Channel Name:	$260.0 \mathrm{~nm}$
Run Time:	12.0 Minutes	Proc. Chnl. Descr.:	PDA 260.0 nm
Date Acquired:	11/26/2014 4:16:23 AM IST		
Date Processed:	11/26/2014 3:31:00 PM IST		

Column: Symmetry C-18 75*4.6mm 3.5 $\mu \mathrm{m}$
Mobile phase: A) 0.1% TFA in water B) ACN
T/\%B: 0/20, 0.5/20, 2/95, 8/95, 10/20, 12/20
Flow: $1.0 \mathrm{ml} / \mathrm{min}$, Diluent: ACN: WATER (90:10)

	RT	Area	\% Area	Height
1	3.588	116605	1.48	18864
2	3.683	8221	0.10	2183
3	3.975	7723046	97.87	1211200
4	4.366	21113	0.27	3410
5	4.521	21985	0.28	3781

Analysed By:

Checked By:

Reported by User: System
Report Method: CPRI@DRILS
Report Method ID: 3574
Page: 1 of 1

Column: Symmetry C-18 75*4.6mm $3.5 \mu \mathrm{~m}$
Mobile phase: A) 0.1% TFA in water B) ACN
T/\%B: 0/20, 0.5/20, 2/95, 8/95, 10/20, 12/20
Flow: $1.0 \mathrm{ml} / \mathrm{min}$, Diluent: ACN: WATER (90:10)

	RT	Area	\% Area	Height
1	4.117	37445	0.40	4797
2	4.381	93618	1.01	12722
3	4.720	9098385	98.32	1380371
4	4.917	14238	0.15	3237
5	5.177	10376	0.11	1650

Checked By:

Reported by User: System
Report Method: CPRI@DRILS
Report Method ID: 3574
Page: 1 of 1

Project Name: NOB_2014
Date Printed:
11/26/2014
3:37:05 PM Asia/Calcutta

Column: Symmetry C-1875*4.6mm 3.5 um
Mobile phase: A) 0.1% TFA in water B) ACN
T/\%B: 0/20, 0.5/20, 2/95, 8/95, 10/20, 12/20
Flow: $1.0 \mathrm{ml} / \mathrm{min}$, Diluent: ACN: WATER (90:10)

	RT	Area	\% Area	Height
1	3.649	28885	0.22	2827
2	3.843	23926	0.18	4050
3	3.931	32873	0.25	5040
4	4.256	7654	0.06	1884
5	4.423	40632	0.31	7404
6	4768	12420818	95.95	1866613
7	5.049	202757	1.57	27321
8	5.314	18077	0.14	3123
9	5.494	168859	1.30	24565

Analyzed By:
$\alpha x^{2} 310^{2015}$

Reported by User: System
Report Method: CPRI@DRILS
Report Method ID: 5860
Page: 1 of 1

Project Name: MAR_2015
Date Printed:
3/31/2015
5:50:31 PM Asia/Calcutta

SAMPLE INFORMATION			
Sample Name:	ILS-RAJ-P-BR-ME	Acquired By:	
AR Number:	CM14K004	Sample Set Name:	241114
Vial:	13	Acq. Method Set:	MC
Injection \#:	1	Processing Method:	MC PRO
Injection Volume:	$5.00 \mathrm{ul}$	Channel Name:	
Run Time:	12.0 Minutes	Proc. Chnl. Descr.:	PDA 260.0 nm
Date Acquired:	11/24/2014 1:42:22 PM IST		
Date Processed:	11/24/2014 2:43:32 PM IST		

Column: Symmetry C-1875*4.6mm $3.5 \mu \mathrm{~m}$
Mobile phase: A) 0.1% TFA in water B) ACN
T/\%B: 0/10, 2/10, 10/95, 20/95, 22/10, 25/10
Flow: $1.0 \mathrm{ml} / \mathrm{min}$, Diluent: ACN: WATER (80:20)

Acquired By: System
Sample Set Name: 241114
Acq. Method Set: MC
Processing Method: MC PRO
260.0nm

Proc. Chnl. Descr.: PDA 260.0 nm

\square

SAMPLE INFORMATION			
Sample Name:	ILS-RAJ-P-F-ME	Acquired By:	System
A R Number:	CM14K009	Sample Set Name:	251114_3
Vial:	34	Acq. Method Set:	MC -
Injection \#:	1	Processing Method:	MC PROO
Injection Volume:	5.00 ul	Channel Name:	260.0 nm
Run Time:	12.0 Minutes	Proc. Chnl. Descr.:	PDA 260.0 nm
Date Acquired:	11/26/2014 2:57:11 AM IST		
Date Processed:	11/26/2014 3:27:00 PM IST		

Column: Symmetry C-18 75*4.6mm 3.5 $\mu \mathrm{m}$
Mobile phase: A) 0.1% 'TFA in water B) ACN
T/\%B: 0/20, 0.5/20, 2/95, 8/95, 10/20, 12/20
Flow: $1.0 \mathrm{ml} / \mathrm{min}$, Diluent: ACN: WATER (90:10)

	RT	Area	\% Area	Height
1	2.867	1750	0.05	245
2	3.487	4528	0.14	734
3	3.750	1067	0.03	288
4	3.886	3266739	99.71	520515
5	4.233	1031	0.03	152
6	4.464	716	0.02	127
7	4.663	493	0.02	87

Checked By:

Reported by User: System
Report Method: CPRI@DRILS
Report Method ID: 3574
Page: 1 of 1

Snf:wate

Column: Symmetry C-18 75*4.6mm 3.5 mm
Mobile phase: A) 0.1% TFA in water B) ACN
T/\%B: 0/20, 0.5/20, 2/95, 8/95, 10/20, $12 / 20$
Flow: $1.0 \mathrm{ml} / \mathrm{min}$, Diluent: ACN: WATER (90:10)

	RT	Area	\% Area	Height
1	2667	29378	0.21	5534
2	3082	13888294	99.79	2129593

Analyzed By:
Checked By:

Reported by User: System
Report Method: CPRI@DRILS
Report Method ID: 5686
Page: 1 of 1

Project Name: APR_2015
Date Printed:
4/30/2015
5:11:56 PM Asia/Calcutta

Column: Symmetry C-18 75*4.6mm 3.5 mm
Mobile phase: A) 0.1% TFA in water B) ACN
T/\%B: 0/20, 0.5/20, 2/95, 8/95, 10/20, 12/20
Flow. $1.0 \mathrm{ml} / \mathrm{min}$, Diluent: ACN: WATER (90:10)

	RT	Area	\% Area	Height
1	4.150	4173	0.04	751
2	4.834	9411670	99.96	1341008

Analyzed By:
 Checked By:

Reported by User: System
Report Method: CPRI@DRILS
Report Method ID: 5686
Page: 1 of 1

Project Name: APR_2015
Date Printed:
4/30/2015
4:56:29 PM Asia/Calcutta

Column: Symmetry C-18 75*4.6mm 3.5 $\mu \mathrm{m}$
Mobile phase: A) 0.1% TFA in water B) ACN
T/\%B: 0/20, 0.5/20, 2/95, 8/95, 10/20, 12/20
Flow: $1.0 \mathrm{ml} / \mathrm{min}$, Diluent: ACN: WATER (90:10)

	RT	Area	\% Area	Height
1	3.912	4099	0.04	612
2	4.136	39336	0.40	4512
3	4.508	5541	0.06	990
4	4.926	9687044	98.16	1370827
5	5.150	14850	0.15	2701
6	5.631	43818	0.44	6110
7	6.506	73567	0.75	9066

Analyzed By
Checked By:
Offoloulw

Reported by User: System
Report Method: CPRI@DRILS
Report Method ID: 5686
Page: 1 of 1

Column: Symmetry C-18 75*4.6mm 3.5 $\mu \mathrm{m}$
Mobile phase: A) 0.1% TFA in water B) ACN
T/\%B: 0/20, 0.5/20, 2/95, 8/95, 10/20, 12/20
Flow: $1.0 \mathrm{ml} / \mathrm{min}$, Diluent: ACN: WATER $(90: 10)$

	RT	Area	\% Area	Height
1	2.825	41210	0.67	6857
2	3.072	19563	0.32	3219
3	3.222	97192	1.57	15991
4	3.544	29735	0.48	3906
5	3.870	5952079	96.10	944607
6	4.017	48893	0.79	7351
7	4.300	4652	0.08	878

Analysed By:
Checked By

Reported by User: System
Report Method: CPRI@DRILS
Report Method ID: 3578
Page: 1 of 1

CPRI@DRILS

SAMPLE			
Sample Name:	ILS-RAJ- $\mathrm{Sm}^{2} \mathrm{~m}$-tBu	$==$	
A R Number:	CM14L018		
Vial:	7	Sample Set Name:	020115
Injection \#:	1	Acq. Method Set:	MC
Injection Volume:	5.00 ul	Processing Method:	MC_PRO
Run Time:	12.0 Minutes	Channel Name: Proc. Chnl. Descr.:	$\begin{aligned} & \text { 260.0nm } \\ & \text { PDA } 260.0 \mathrm{~nm} \end{aligned}$
Date Acquired:	1/2/2015 5:07:43 PM IST		
Date Processed:	1/2/2015 5:15:12 PM IST		

Column: Symmetry C-18 $75 * 4.6 \mathrm{~mm} 3.5 \mu \mathrm{~m}$
Mobile phase: A) 0.1% TFA in water B) ACN
T/\%B: 0/20, 0.5/20, 2/95, 8/95, 10/20, 12/20
Flow: $1.0 \mathrm{ml} / \mathrm{min}$, Diluent: ACN: WATER ($90: 10$)

	RT	Area	\% Area	Height
1	2.821	42204	0.53	7247
2	3.238	16163	0.20	2516
3	3.317	2665	0.03	932
4	3.617	635	0.01	168
5	3.784	6612	0.08	1006
6	3.996	29564	0.37	5104
7	4.260	7743188	97.64	1259739
8	4.468	58250	0.73	9952

	RT	Area	\% Area	Height
9	4.703	13480	0.17	2309
10	5.549	17222	0.22	2199

Analysed By:
Checked By:

Reported by User: System
Report Method: CPRI@DRILS
Project Name: JAN_2015
Date Printed:
1/5/2015
10:11:58 AM Asia/Calcutta

Column: Symmetry C-18 75*4.6mm 3.5 $\mu \mathrm{m}$ Mobile phase: A) 0.1% TFA in water B) ACN T/\%B: 0/20, 0.5/20, 2/95, 8/95, 10/20, 12/20 Flow: $1.0 \mathrm{ml} / \mathrm{min}$, Diluent: ACN: WATER (90:10)

	RT	Area	$\%$ Area	Height
1	4.823	3421820	97.49	502349
2	5.558	15521	0.44	1941
3	6.039	72615	2.07	9284

Analyzed By:
Checked By:

Reported by User: System
Report Method: CPRI@DRILS
Report Method ID: 5686
Page: 1 of 1

SAMPLE INFORMATION

Sample Name:	ILS-RAJ-N
Sample Type:	CM15E009
Vial:	17
Injection \#:	1
Injection Volume:	1.20 ul
Run Time:	12.0 Minutes

Sample Set Name:	$130515 _2$
Acc. Method Set:	MC
Processing Method:	MC PRO
Channel Name:	220.0 nm
Proc. Chnl. Descr.:	DA 220.0 nm

Date Acquired: $\quad 5 / 13 / 2015$ 2:54:45 PM IST
Date Processed: $\quad 5 / 13 / 2015$ 3:24:29 PM IST

Column: Symmetry C-18 75*4.6mm $3.5 \mu \mathrm{~m}$
Mobile phase: A) 0.1% TFA in water B) ACN
T/\%B: 0/20, 0.5/20, 2/95, 8/95, 10/20, $12 / 20$
Flow: $1.0 \mathrm{ml} / \mathrm{min}$, Diluent: ACN: WATER (90:10)

	$R T$	Area	\% Area	Height
1	4.583	1396	0.02	262
2	4.856	7230575	99.96	979920
3	5.133	1746	0.02	686

Analyzed By:

Checked By:

Reported by User: System
Project Name: MAY-2015
Date Printed:
5/13/2015
Report Method ID: 2331
3:28:13 PM Asia/Calcutta

Page: 1 of 1

SAMPLE INFORMATION

Sample Name:	ILS-RAJ-PIDA-4P		
Sample Type:	CM15E008	Sample Set Name:	130515_2
Vial:	16	Acc. Method Set:	MC
Injection \#:	1	Processing Method:	MC_PRO
Injection Volume:	1.50 ul	Channel Name:	220.0nm@1
Run Time:	12.0 Minutes	Proc. Chi. Descr.:	PDA 220.0 nm
Date Acquired:	$5 / 13 / 20152: 39: 49$ PM PST		
Date Processed:	$5 / 13 / 20153: 24: 16$ PM ST		

Column: Symmetry C-18 75*4.6mm 3.5 $\mu \mathrm{m}$
Mobile phase: A) 0.1% TFA in water B) ACN
T/\%B: 0/20, 0.5/20, 2/95, 8/95, 10/20, 12/20
Flow: $1.0 \mathrm{ml} / \mathrm{min}$, Diluent: ACN: WATER ($90: 10$)

	RT	Area	$\%$ Area	Height
1	4.650	5609	0.04	975
2	4.847	14561299	99.96	1910323

Analyzed By:
Checked By:

Reported by User: System
Report Method: CPRI@DRILS
Report Method ID: 2331
Page: 1 of 1

Date Printed:
5/13/2015
3:25:46 PM Asia/Calcutta

SAMPLE INFORMATION

Sample Name:	LLS-RAJ-PIDA-2		Sample Set Name:
Sample Type:	CM15E010	180515 _2	
Vial:	18	Acq. Method Set:	MC
Injection \#:	1	Processing Method:	MC PRO
Injection Volume:	1.20 ul	Channel Name:	220.0 nm
Run Time:	12.0 Minutes	Proc. Chnl. Descr::	PDA 220.0 nm
Date Acquired:	$5 / 13 / 20153: 09: 28$ PM ST		
Date Processed:	$5 / 13 / 20153: 25: 30$ PM ST		

Column: Symmetry C-18 75*4.6mm $3.5 \mu \mathrm{~m}$
Mobile phase: A) 0.1% TFA in water B) ACN
T/\%B: $0 / 20,0.5 / 20,2 / 95,8 / 95,10 / 20,12 / 20$
Flow: $1.0 \mathrm{ml} / \mathrm{min}$, Diluent: ACN: WATER (90:10)

	RT	Area	\% Area	Height
1	4.402	13577888	99.86	1837954
2	5.169	18676	0.14	2752

Analyzed By:
Checked By:

Reported by User: System
Report Method: CPRI@DRILS
Report Method ID: 2331
Date Printed:
5/13/2015
3:28:29 PM Asia/Calcutta

Page: 1 of 1

