Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Amino-substituted spirothiopyran as an initiator for self-assembly of gold nanoparticles

Yasuhiro Shiraishi,^{a,b}* Haruki Tanaka,^a Hirokatsu Sakamoto,^a Satoshi Ichikawa^c and Takayuki Hirai^a

- [a] Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
- [b] PRESTO, JST, Saitama 332-0012, Japan
- [c] Institute for NanoScience Design, Osaka University, Toyonaka 560-8531, Japan

* shiraish@cheng.es.osaka-u.ac.jp

Electronic Supplementary Information (ESI†)

CONTENTS

page

Fig. S1 ¹ H NMR chart of 2	2
Fig. S2 ¹³ C NMR chart of 2	3
Fig. S3 FAB-MS chart of 2	4
Fig. S4 Absorption spectra of 2	5
Fig. S5 Absorption spectra of AuNPs with 2	5
Table S1 TD-DFT calculation results for 2	6
Cartesian coordinates for respective compounds	7

Fig. S1 ¹H NMR chart of 2 (CDCl₃, 400 MHz)

-

T ST-NH2 Carbon single pulse 2013-12-18 15 2013-12-18 15 5.35 5.35 100.53 1.0433 1.0433 1.0433 1.0433 1.0433 1.0433 2.0000 0.200 10 2.0000 0.2000 0.200 0.20000 0.200000 0.20000 0.200000000	
DFILE DATIM DATIM DATIM DATIM DATIM DATIM DATIM DATIM PD DATIN FREAD CANS SCANS SCANS SCANS SCANS FR FR CTEMP BF RGAIN	
	5
53°.00	2
	1
65b.12 - 51.459	
9 # E · / L	•
ISI'LOT	
040: SII 030: SII 040: SII 050: VEI 061: VEI 070: VEI	
	• • •

-

Fig. S2 ¹³C NMR chart of 2 (CDCl₃, 101 MHz)

i

Fig. S3 FAB-MS chart of 2.

•

Fig. S4 Change in absorption spectra of the solution containing the MC form of 2 (20 μ M) during visible light irradiation (490 nm) for 60 min at 25 °C.

Fig. S5 Absorption spectra of the solution containing AuNPs (0.12 nM) stabilized with 4.8 mM GABA during stirring with different amount of **2** in the dark condition.

0.000					μ / D	ebye		Ţ
sainade				μ _x	μ	μ_{z}	μ_{tot}	ſ
	$S_0 \to S_1$	HOMO → LUMO (0.659)	3.3747 [367.39]	-0.536	0.705	1.262	0.08	0.0304
	$S_0 \rightarrow S_2$	$HOMO-1 \rightarrow LUMO$ (0.691)	3.5742 [346.89]	0.069	0.066	0.585	0.01	0.0048
	$S_0 \rightarrow S_3$	HOMO \rightarrow LUMO+2 (0.480)	4.4515 [278.52]	-0.251	-0.116	0.006	0.00	0.0013
(4C)7	$S_0 \rightarrow S_4$	HOMO \rightarrow LUMO+1 (0.482)	4.5404 [273.07]	1.119	0.412	-0.529	0.07	0.0293
	$S_0 \rightarrow S_5$	HOMO-1 \rightarrow LUMO+1 (0.491)	4.5667 [271.50]	-1.357	-0.431	0.637	0.11	0.0421
	$S_0 \rightarrow S_6$	HOMO \rightarrow LUMO+3 (0.495)	4.7975 [258.44]	1.900	0.672	0.672	0.21	0.0821
	$S_0 \to S_1$	HOMO → LUMO (0.604)	1.6298 [760.75]	5.017	2.127	-0.001	0.47	0.1835
	$S_0 \rightarrow S_2$	HOMO-1 → LUMO (0.695)	1.8293 [677.76]	0.006	0.000	0.020	00.00	0.0000
Z(MC)	$S_0 \rightarrow S_3$	HOMO-2 → LUMO (0.614)	3.0205 [410.47]	-7.693	-0.421	-0.002	1.73	0.6799
	$S_0 \rightarrow S_4$	HOMO-3 → LUMO (0.636)	3.2582 [380.52]	-3.177	1.450	0.002	0.38	0.1507

Table S1 Calculated electronic excitation properties for the SP and MC forms of $2^{[a]}$

[a] Calculated at the DFT level (B3LYP/6-31Gd). [b] CI expansion coefficients for the main orbital transitions. Cartesian Cordinates (in Å) of 1

С	5.13999	-1.660764	0.422032	Н	5.84551	-2.41574	0.763757
С	5.409473	-0.924193	-0.733199	Н	6.326558	-1.110021	-1.290564
С	4.513341	0.047779	-1.20403	Н	4.730965	0.604086	-2.112751
С	3.343249	0.259684	-0.475391	Н	3.749444	-2.002293	2.049431
С	3.063028	-0.473182	0.690823	Н	-1.676513	2.740231	0.675103
С	3.956629	-1.430908	1.145351	Н	-1.918043	-2.329792	-1.600686
Ν	2.307429	1.172642	-0.724222	Н	-4.34574	-2.219986	-1.098643
С	1.133575	0.754347	0.01067	Н	-3.780507	1.607095	0.793219
С	1.76714	0.052458	1.290812	Н	1.380667	-1.384464	2.856774
S	0.233165	-0.549784	-1.110574	Н	-0.073938	-0.571027	2.271367
С	-1.467658	-0.426457	-0.67673	Н	0.681736	-1.8532	1.299213
С	-1.988979	0.7047	0.000278	Н	2.726049	1.938698	1.911361
С	-1.145454	1.842646	0.357054	Н	1.21433	1.577477	2.775622
С	-2.325479	-1.466445	-1.077228	Н	2.693617	0.675049	3.15404
С	-3.683521	-1.413445	-0.799589	Н	3.137065	2.43471	-2.164193
С	-4.186232	-0.302646	-0.113506	Н	2.029274	1.211841	-2.839892
С	-3.358846	0.748206	0.278166	Н	1.387653	2.602035	-1.93284
С	0.88217	-1.005215	1.95756	С	0.195761	1.88787	0.308845
С	2.119717	1.137058	2.344001	Н	0.693491	2.820124	0.576022
С	2.208502	1.883218	-1.987275	0	-6.033366	0.747584	0.804377
Ν	-5.605305	-0.236621	0.189337	0	-6.329829	-1.168672	-0.179983

Cartesian Cordinates (in Å) of 2 (SP)

С	4.632207	-1.613685	-0.433346	Н	5.345187	-2.432939	-0.504385
С	4.902197	-0.394995	-1.058691	Н	5.827811	-0.268668	-1.618795
С	3.995664	0.674552	-0.993755	Н	4.214442	1.613943	-1.49607
С	2.813901	0.484689	-0.276239	Н	3.228912	-2.735332	0.780308
С	2.533266	-0.737481	0.360914	Н	-2.233636	2.027409	1.91717
С	3.436929	-1.785893	0.287865	Н	-2.43238	-1.388479	-2.453157
Ν	1.771285	1.389844	-0.052228	Н	-4.82898	-1.622651	-1.919171
С	0.586798	0.650552	0.356152	Н	-4.300635	0.910613	1.52305
С	1.22421	-0.592457	1.123866	Н	0.857724	-2.636857	1.722879
S	-0.295179	0.113899	-1.264181	Н	-0.603736	-1.642891	1.657738
С	-1.993408	-0.106043	-0.774163	Н	0.138708	-2.228352	0.155061
С	-2.529559	0.550506	0.353419	Н	2.159823	0.730052	2.619054
С	-1.697987	1.402493	1.201428	Η	0.644314	-0.021255	3.166048
С	-2.836912	-0.879957	-1.578727	Η	2.12854	-0.986653	3.060143
С	-4.19123	-1.012497	-1.280008	Н	2.587842	3.229766	-0.607074
С	-4.744051	-0.374667	-0.153138	Н	1.56922	2.49085	-1.870027
С	-3.893988	0.403691	0.647111	Н	0.823666	3.20726	-0.42297
С	0.348761	-1.848032	1.157008	С	-0.356567	1.485329	1.178553
С	1.557555	-0.183012	2.582977	Н	0.136351	2.174202	1.864479
С	1.683084	2.639375	-0.786111	Η	-6.481567	0.184957	0.760431
Ν	-6.084048	-0.563895	0.194167	Н	-6.694628	-0.783812	-0.592078

Cartesian Cordinates (in Å) of 2 (MC)

С	-5.718536	-0.930191	-0.006308	Н	-6.628396	-1.52745	-0.008296
С	-5.80446	0.466017	-0.007771	Η	-6.780794	0.947382	-0.010991
С	-4.654342	1.263923	-0.005307	Η	-4.740339	2.34797	-0.006787
С	-3.426677	0.606915	-0.001237	Н	-4.408613	-2.655604	-0.001362
С	-3.322002	-0.786633	-0.000011	Н	0.454869	1.583854	0.001878
С	-4.469909	-1.567862	-0.002428	Н	0.98398	-1.428673	0.004329
Ν	-2.121399	1.15554	0.001704	Н	5.275882	2.044127	-0.004823
С	-1.171818	0.194451	0.003625	Н	6.5592	-0.034565	-0.007733
С	-1.854756	-1.181898	0.00416	Н	2.910826	-2.296076	0.001527
С	0.192039	0.532963	0.003361	Η	-0.459831	-2.280899	-1.298536
С	1.240133	-0.372822	0.003426	Η	-1.735856	-1.412957	-2.17439
С	2.651639	-0.142243	0.001924	Η	-2.118155	-2.903711	-1.292253
С	3.319762	1.142953	0.001362	Η	-0.466401	-2.276629	1.317546
С	4.742214	1.096232	-0.003119	Η	-2.125191	-2.898166	1.306681
С	5.469199	-0.074545	-0.004828	Η	-1.7455	-1.404009	2.184199
С	4.823342	-1.342212	-0.003001	Η	-1.257486	2.856335	0.890693
С	3.43665	-1.340866	0.000458	Η	-2.773636	3.141432	0.005153
Ν	5.567459	-2.498225	-0.005098	Н	-1.263349	2.857633	-0.891089
С	-1.513644	-1.990954	-1.271748	Η	5.122186	-3.407875	-0.001691
С	-1.51984	-1.985993	1.284986	Η	6.579454	-2.466428	-0.008828
С	-1.836226	2.587746	0.001538	S	2.562383	2.722701	0.001502