Supporting Information

Twoblueiridiumcomplexesforefficientelectroluminescence with low efficiency roll-off

Qiu-Lei Xu, Xiao Liang, Liang Jiang, Yue Zhao, You-Xuan Zheng*

State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China, e-mail: <u>yxzheng@nju.edu.cn</u>

Supporting Information	1
Table S1 Crystallographic data and structure refinement for complexes (dfpypy) ₂ Ir(tpip) and	
(dfpypy) ₂ Ir(Ftpip)	2
Table S2 The table of selected bond lengths of (dfpypy) ₂ Ir(tpip) and (dfpypy) ₂ Ir(Ftpip)	3
Table S3. The orbital distributions of complexes (dfpypy) ₂ Ir(tpip) and dfpypy) ₂ Ir(Ftpip)	3
Figure S1. The lifetime curves of (dfpypy) ₂ Ir(tpip) and dfpypy) ₂ Ir(Ftpip) in degassed CH ₂ Cl ₂	
solution at room temperature.	4
Figure S2. The normalized emission spectra of $(dfpypy)_2Ir(tpip)$ and $dfpypy)_2Ir(Ftpip)$ in CH_2Cl_2	
solution at room temperature and 77 K	4
Figure S3. The power efficiency–luminance (η_p-L) curves of device B1, B2 and B3	4

	(dfpypy) ₂ Ir(tpip)	(dfpypy) ₂ Ir(Ftpip)	
Formula	$C_{44}H_{30}F_4$	$C_{44}H_{26}F_8$	
	$IrN_5O_2P_2$	$IrN_5O_2P_2$	
FW	990.90	1062.84	
Т (К)	296(2)	296(2)	
Wavelength (Å)	0.71073	0.71073	
Crystal system	Monoclinic	Monoclinic	
Space group	<i>P</i> 2 ₁ /c	$P2_1/n$	
a (Å)	11.523 (3) 20.944(5)		
b (Å)	16.473 (2)	19.770(5)	
c (Å)	20.708 (3)	3) 21.011(5)	
a (deg)	90.00	90.00	
β (deg)	90.00	106.420(4)	
γ (deg)	90.00	90.00	
$V(Å^3)$	3930.8(15)	8345(4)	
Z	4	8	
$ ho_{ m calcd}~(m mg/cm^3)$	1.674	1.692	
μ (Mo Ka) (mm ⁻¹)	3.543	3.357	
F (000)	1952	4160	
Refins collected	23539	71484	
Unique	7729	18321	
Data/restraints/params	7729 / 0 / 523	18321/0/1117	
GOF on F^2	0.892	0.991	
R_1^a , wR_2^b $[I > 2\sigma(I)]$	0.0292, 0.0630	0.0357, 0.0885	
R_1^a , wR_2^b (all data)	0.0380, 0.0648	0.0628, 0.1007	
CCDC NO	1062396	1062397	

Table S1 Crystallographic data and structure refinement for complexes (dfpypy)₂Ir(tpip) and (dfpypy)₂Ir(Ftpip)

 $R_1^a = \Sigma ||F_o| - |F_c|| / \Sigma F_o|$. w $R_2^b = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)]^{1/2}$

(dfpypy) ₂ Ir(tpip)						
Selected bonds						
Ir(1)-C(1)	1.982(4)	Ir(1)-O(1)	2.202(2)	Ir(1)-N(4)	2.048(3)	
Ir(1)-C(11)	1.970(3)	Ir(1)-O(2)	2.177(2)	Ir(1)-N(5)	2.044(3)	
O(2)-P(2)	1.521(3)	N(1)-P(2)	1.591(3)	C(4)-N(2)	1.302(6)	
O(1)-P(1)	1.522(2)	N(1)-P(1)	1.590(3)	C(3)-N(2)	1.303(6)	
C(3)-F(1)	1.352(5)	C(4)-F(2)	1.355(5)			
(dfpypy) ₂ Ir(Ftpip)						
Selected bonds						
Ir(2)-C(45)	1.971(5)	Ir(2)-O(4)	2.180(3)	Ir(2)-N(8)	2.034(4)	
Ir(2)-C(55)	1.965(5)	Ir(2)-O(3)	2.176(3)	Ir(2)-N(9)	2.030(4)	
O(3)-P(9)	1.511(3)	N(10)-P(9)	1.587(4)	C(43)-N(6)	1.288(8)	
O(4)-P(11)	1.504(3)	N(10)-P(11)	1.579(4)	C(47)-N(6)	1.290(8)	
C(43)-F(13)	1.352(7)	C(47)-F(14)	1.355(7)			

Table S2 The table of selected bond lengths of (dfpypy)₂Ir(tpip) and (dfpypy)₂Ir(Ftpip)

Table S3. The orbital distributions of complexes (dfpypy)₂Ir(tpip) and dfpypy)₂Ir(Ftpip).

Group	(dfpypy	y)2Ir(tpip)	(dfpypy) ₂ Ir(Ftpip)
Ir (%)	LUMO	5.02	5.02
	НОМО	56.22	56.11
dfppy (%)	LUMO	91.53	90.97
	НОМО	37.36	35.36
tpip /Ftpip (%)	LUMO	3.45	4.01
	НОМО	6.41	8.52

Figure S1. The lifetime curves of $(dfpypy)_2Ir(tpip)$ and $dfpypy)_2Ir(Ftpip)$ in degassed CH_2Cl_2 solution at room temperature.

Figure S2. The normalized emission spectra of $(dfpypy)_2Ir(tpip)$ and $dfpypy)_2Ir(Ftpip)$ in CH_2Cl_2 solution at room temperature and 77 K.

Figure S3. The power efficiency–luminance (η_p-L) curves of device B1, B2 and B3.