Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

> **Supporting Information** 1 2 Preparation of temperature sensitive molecularly imprinted 3 polymer coatings on nickel foam for determination of by solid-phase 4 ofloxacin in Yellow River water 5 microextraction 6 Xiujuan Guan, Xinyue Zhu, Bianfei Yu, Tong Zhao, Haixia Zhang\* 7 8 State Key Laboratory of Applied Organic Chemistry, College of Chemistry and 9 10 Chemical Engineering, Lanzhou University, Lanzhou 730000, China 11 12 13 14 \*Corresponding author: Haixia Zhang 15 Tel.: +86 931 8912058; 16 Fax: +86 931 8912582. 17 E-mail: zhanghx@lzu.edu.cn 18 19 20 21 22 23

| 1  | Contents                                                                          |
|----|-----------------------------------------------------------------------------------|
| 2  | 1. Structures of compounds studied in the work                                    |
| 3  | 2. Pictures of original NF (1), D- NF (2), MIP-NF (3) and NIP-NF (4) in synthesis |
| 4  | procedure                                                                         |
| 5  | 3. IR spectra of NIP (a) and MIP (b) materials                                    |
| 6  | 4. Thermogravimetric curves of MIP and NIP.                                       |
| 7  | 5. Photos of MIP-NF(M) and NIP-NF(N) after static adsorption of ENR or RhB        |
| 8  | under ultraviolet light or natural light                                          |
| 9  | 6. Elemental analysis of NIP and MIP                                              |
| 10 | 7. Pore structure parameters of MIP and NIP                                       |
| 11 | 8. The adsorption and desorption quantity of temperature sensitive experiment     |
| 12 | 9. Parameters of Langmuir and Freundlich equations                                |
| 13 |                                                                                   |
| 14 |                                                                                   |
| 15 |                                                                                   |
| 16 |                                                                                   |
| 17 |                                                                                   |
| 18 |                                                                                   |
| 19 |                                                                                   |
| 20 |                                                                                   |
| 21 |                                                                                   |
| 22 |                                                                                   |

### 2 1. Structures of compounds studied in the work



## 7 2. Pictures of original NF (1), D- NF (2), MIP-NF (3), NIP-NF (4).





Fig.S2. Pictures of original NF (1), D- NF (2), MIP-NF (3), NIP-NF (4).

#### 1 3. IR spectra of NIP (a) and MIP (b) materials





Fig.S3. IR spectra of NIP and MIP materials.

In the symmetric stretching vibration peak of Si-O-Si and 1635 cm<sup>-1</sup> is the vibration peak of C=C. 1729 cm<sup>-1</sup> is the vibration peak of C=O of EGDMA and 2958 cm<sup>-1</sup> is the characteristic absorption peak of C-H. The transmittance at 3432 cm<sup>-1</sup> shows that materials have abundant hydroxyl groups after dopamine modified. The presence of above characteristic absorption peaks proved that the synthesis of MIP was successful.

#### 10 4. Thermogravimetric curves of MIP and NIP.

11

2

3



Fig.S4. Thermogravimetric curves of MIP and NIP.

- 2 5. Photos of MIP-NF(M) and NIP-NF(N) after static adsorption of ENR or RhB
- 3 under ultraviolet light or natural light.
- 4

1

| M-2 | M-3                      | M-4                                      | M-5                                                      | M-6                                                                      |
|-----|--------------------------|------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------|
| N-2 | N-3                      | N-4                                      | N-5                                                      | N-6                                                                      |
| M-2 | M-3                      | M-4                                      | M-5                                                      | M-6                                                                      |
| N-2 | N-3                      | N-4                                      | N-5                                                      | N-6                                                                      |
|     | M-2<br>N-2<br>M-2<br>N-2 | M-2 M-3<br>N-2 N-3<br>M-2 M-3<br>N-2 N-3 | M-2 M-3 M-4<br>N-2 N-3 N-4<br>M-2 M-3 M-4<br>N-2 N-3 N-4 | M-2 M-3 M-4 M-5<br>N-2 N-3 N-4 N-5<br>M-2 M-3 M-4 M-5<br>N-2 N-3 N-4 N-5 |

- Fig.S5. Photos of MIP-NF(M) and NIP-NF(N) after static adsorption of ENR for 24 h (A) and in
  air for another 12 h (B) under ultraviolet lamp.
- 8 Conditions: adsorption temperature: 25°C; samples: 10 mL ENR aqueous solutions with different
   9 concentrations (1-6 were 5, 10, 20,40, 80, 100 μg mL<sup>-1</sup>, respectively).
- 10



- 11
- 12 Fig.S6. Photos of MIP -NF(M) and NIP-NF (N) after static adsorption of RhB for 24 h (A) and in
- 13 air for another 12 h (B) under ultraviolet lamp.
- Conditions: adsorption temperature: 25°C; samples: 10 mL RhB aqueous solutions with different
  concentrations (1-6 were 0.1, 0.2, 0.5,1, 2, 4 μg mL<sup>-1</sup>, respectively).

|   | M-1 M-2 M-3 M-3 M-3 M-3                                                                    |
|---|--------------------------------------------------------------------------------------------|
|   | N-1 N-2 N-3 N-4 N-5 N-6                                                                    |
| 1 |                                                                                            |
| 2 | Fig.S7. Photos of MIP –NF (M) and NIP-NF (N) after static adsorption of RhB for 24 h under |
| 3 | natural light                                                                              |
| 4 | Conditions: same as Fig.S6.                                                                |
| 5 |                                                                                            |
|   |                                                                                            |

### 6 6. Elemental analysis of NIP and MIP.

| 7 | Table S1 Elemental analysis of NIP and MIP(n=2) |       |              |       |         |       |        |  |
|---|-------------------------------------------------|-------|--------------|-------|---------|-------|--------|--|
|   | Sample                                          | N (%) | Average      | C (%) | Average | H (%) | Averag |  |
|   |                                                 |       |              |       |         |       | e      |  |
|   | NID                                             | 0.34  | 0.26         | 48.00 | 40.11   | 6.839 | 6 009  |  |
|   | NIP                                             | 0.35  | 0.36         | 48.21 | 48.11   | 6.977 | 0.908  |  |
|   |                                                 | 0.68  | 0.65         | 52.51 | 52.57   | 6.673 | 6.646  |  |
|   | MIP                                             | 0.61  |              | 52.60 | 52.56   | 6.619 |        |  |
|   | MID <sup>2</sup>                                | 0.38  | <b>. . .</b> | 47.78 | 47.01   | 6.778 | 6.0.40 |  |
|   | MIP <sup>2</sup>                                | 0.35  | 0.30         | 47.83 | 4/.81   | 6.919 | 6.849  |  |

8<sup>-1</sup> and <sup>2</sup> meant before and after removal of template molecules, respectively.

### 9 7. Pore structure parameters of MIP and NIP.

10

11

### Table S2 Pore structure parameters of MIP and NIP

| Samula | $S_{BET}$ (m <sup>2</sup> g <sup>-1</sup> ) | V <sub>BJH</sub> (c | $cm^3g^{-1}$ ) | D <sub>BJH</sub> (nm) |            |
|--------|---------------------------------------------|---------------------|----------------|-----------------------|------------|
| Sample |                                             | Adsorption          | Desorption     | Adsorption            | Desorption |
| MIP    | 13.0757                                     | 0.0461              | 0.0464         | 16.2100               | 14.8069    |
| NIP    | 0.3893                                      | 0.0010              | 0.0012         | 7.8233                | 7.9747     |

12

# 13 8. The adsorption and desorption quantity of temperature sensitive experiment

1

2 Table S3 The adsorption and desorption quantity on MIP-NF at different temperature

| Temperature (°C)                          | 25    | 35    | 45    |
|-------------------------------------------|-------|-------|-------|
| Adsorption quantity (µg g <sup>-1</sup> ) | 280.2 | 235.1 | 213.1 |
| Desorption quantity(µg g <sup>-1</sup> )  | 36.91 | 43.56 | 63.89 |

3

### 4 9. Parameters of Langmuir and Freundlich equations

5

6

#### Table S4 Parameters of Langmuir and Freundlich equations

| Matarial   |             | Langmuir         |                |                | Freundlich |                |  |
|------------|-------------|------------------|----------------|----------------|------------|----------------|--|
| Iviaterial | $K_{\rm L}$ | Q <sub>max</sub> | R <sup>2</sup> | K <sub>f</sub> | n          | R <sup>2</sup> |  |
| MIP        | 0.0558      | 666.7            | 0.9912         | 0.8550         | 1.059      | 0.9527         |  |
| NIP        | 0.1094      | 628.9            | 0.9926         | 0.9335         | 1.026      | 0.9761         |  |

 $7~K_{\rm L}$  is Langmuir adsorption constants.  $K_{\rm F}$  is Freundlich adsorption constant and 1/n is the

8 adsorption index indicating adsorption strength.