Supporting information

Figure Caption

- Fig. S1 The IR spectra of the $(C_{16}TA)_{n}H_{6-n}P_{2}W_{18}O_{62}$: (a) $(C_{16}TA)H_{5}P_{2}W_{18}O_{62}$; (b) $(C_{16}TA)_{2}H_{4}P_{2}W_{18}O_{62}$; (c) $(C_{16}TA)_{3}H_{3}P_{2}W_{18}O_{62}$; (d) $(C_{16}TA)_{4}H_{2}P_{2}W_{18}O_{62}$; (e) $(C_{16}TA)_{5}HP_{2}W_{18}O_{62}$; and (f) $(C_{16}TA)_{6}P_{2}W_{18}O_{62}$
- Fig. S2 ³¹P MAS NMR spectra of (a) $(C_{16}TA)H_5P_2W_{18}O_{62}$, (b) $(C_{16}TA)_3H_3P_2W_{18}O_{62}$, (c) $(C_{16}TA)_6P_2W_{18}O_{62}$ and (d) after the reaction.
- Fig. S3 XRD patterns of $H_6P_2W_{18}O_{62}$ (a) and $(C_{16}TA)H_5P_2W_{18}O_{62}$ (b).
- Fig. S4 The conductivity of $(C_{16}TA)_{n}H_{6-n}P_{2}W_{18}O_{62}$ at the room temperature. (a) $(C_{16}TA)$ $H_{5}P_{2}W_{18}O_{62}$, (b) $(C_{16}TA)_{2}H_{4}P_{2}W_{18}O_{62}$, (c) $(C_{16}TA)_{3}H_{3}P_{2}W_{18}O_{62}$, (d) $(C_{16}TA)_{4}H_{2}P_{2}W_{18}O_{62}$, (e) $(C_{16}TA)_{5}HP_{2}W_{18}O_{62}$, (f) $(C_{16}TA)_{6}P_{2}W_{18}O_{62}$.
- Fig. S5 The TEM and EDAX of the $(C_{16}TA)H_5P_2W_{18}O_{62}$
- Fig. S6 The IR spectra of $(C_{16}TA)H_5P_2W_{18}O_{62}$ adsorbing cellulose(left) and $(C_{16}TA)H_2PW_{12}O_{40}$ absorbing cellulose (right)
- **Fig. S7** The IR spectra of the $(C_{16}TA)H_5P_2W_{18}O_{62}$ before (a) and after the reaction (b)
- Table S1 Hydrolysis of cellulose comparision with recently reported chemical procedures.
- **Table S2** The elemental analysis of $(C_{16}TA)_nH_{6-n}P_2W_{18}O_{62}$ and acid contents.
- Table S3 Voltammetric Data for heteropolytungstates using a wax-Impregnated graphite electrode.

Fig. S1 The IR spectra of the $(C_{16}TA)_{n}H_{6-n}P_{2}W_{18}O_{62}$: (a) $(C_{16}TA)H_{5}P_{2}W_{18}O_{62}$; (b) $(C_{16}TA)_{2}H_{4}P_{2}W_{18}O_{62}$; (c) $(C_{16}TA)_{3}H_{3}P_{2}W_{18}O_{62}$; (d) $(C_{16}TA)_{4}H_{2}P_{2}W_{18}O_{62}$; (e) $(C_{16}TA)_{5}HP_{2}W_{18}O_{62}$; and (f) $(C_{16}TA)_{6}P_{2}W_{18}O_{62}$

Fig. S2 ³¹P MAS NMR spectra of (a) $(C_{16}TA)H_5P_2W_{18}O_{62}$, (b) $(C_{16}TA)_3H_3P_2W_{18}O_{62}$, (c) $(C_{16}TA)_6P_2W_{18}O_{62}$ and (d) after the reaction.

Fig. S3 XRD patterns of $H_6P_2W_{18}O_{62}$ (a) and $(C_{16}TA)H_5P_2W_{18}O_{62}$ (b).

Fig. S4 The conductivity of $(C_{16}TA)_nH_{6-n}P_2W_{18}O_{62}$ at the room temperature. (a) $(C_{16}TA)$ $H_5P_2W_{18}O_{62}$, (b) $(C_{16}TA)_2H_4P_2W_{18}O_{62}$, (c) $(C_{16}TA)_3H_3P_2W_{18}O_{62}$, (d) $(C_{16}TA)_4H_2P_2W_{18}O_{62}$, (e) $(C_{16}TA)_5HP_2W_{18}O_{62}$, (f) $(C_{16}TA)_6P_2W_{18}O_{62}$.

Fig. S5 The TEM and EDX of the $(C_{16}TA)H_5P_2W_{18}O_{62}$

Fig. S6 The IR spectra of $(C_{16}TA)H_5P_2W_{18}O_{62}$ adsorbing cellulose(left) and $(C_{16}TA)H_2PW_{12}O_{40}$ absorbing cellulose (right)

Fig. S7 The IR spectra of the $(C_{16}TA)H_5P_2W_{18}O_{62}$ before (a) and after the reaction (b)

Catalyst	Solvents	Temp.	Time	Glucose yield	Ref.	
		(K)	(h)	(%)		
HNbMoO ₆	H ₂ O	403	12	8.5	1	
Zn–Ca–Fe	H_2O	433	20	29	2	
Amberlyst–15	[BMIm]Cl/H2O	373	5	11	3	
CP–SO ₃ H	H_2O	393	10	93	4	
Nafion NR50	H ₂ O	403	2	35	5	
Nafion SAC50	H_2O	463	24	11	6	
PCPs–SO ₃ H	H_2O	393	3	5.3	7	
AC–SO ₃ H	H_2O	373	3	64	8	
BC–SO ₃ H	H_2O	363(MW)	1	19.8	9	
CSA–SO ₃ H ^b	H_2O	403(MW)	1	34.6	10	
SC–SO ₃ H	[BMIm]Cl/H ₂ O	383	4	63	11	
AC-N-SO ₃ H-250	H_2O	423	24	62.6	12	
CMK-3-SO ₃ H	H_2O	423	24	74.5	12	
SimCn–SO ₃ H	H ₂ O	423	24	50.4	13	
$H_{3}PW_{12}O_{40}$	H_2O	423	2	18	14	
$H_{3}PW_{12}O_{40}$	H_2O	453	2	50.5	15	
$H_5BW_{12}O_{40}$	H_2O	333	6	77	16	
$H_{3}PW_{12}O_{40}$	H_2O	363(MW)	3	75.6	17	
Micellar HPA	H_2O	443	8	39.3	18	
[MIMPSH] _n H ₃ - _n PW	H ₂ O/MIBK	413	5	36	19	
$CsH_2PW_{12}O_{40}$	H_2O	433	6	27	20	
H-beta	H_2O	423	24	12	21	
HY zeolite	[C ₄ mim]Cl/H ₂ O	373(MW)	0.13	37	22	
HY zeolite	[BMIm]Cl/H ₂ O	403	2	50	23	
Fe ₃ O ₄ –SBA–SO ₃ H	H_2O	423	3	26	24	
Fe ₃ O ₄ –SBA–SO ₃ H	H ₂ O	423	3	50	25	
MNPs@SiO2-SO3H	H ₂ O	423	3	30.2	26	
Ru/CMK-3	H ₂ O	503	24	34.2	27	
CaFe ₂ O ₄	H ₂ O	423	24	36	28	
HT–OH _{Ca}	H ₂ O	423	24	40.7	29	
AC-SO ₃ H	H_2O	423	12	42.5	30	
PDVB-SO ₃ H-[C ₃ vim]- [SO ₃ CF ₃]	[C4mim]Cl/H2O	373	5	77.0	31	
PVP–HPW	Butanol	433	4	61.6a-BGS	32	
PVP-HSiW (1/5 : 3/4)		433	4	60.8a-BGS		
K26, HCl	H ₂ O	453	1	88	33	
K26	-		1	36		
Cp-SO ₃ H-1.69	H ₂ O	443	10	2.1	34	
NbP	H ₂ O	453(MW)	0.25	22	35	
(CTA)H5P2W18O64	H ₂ O	433	9	69.1	This work	
$(CTA)H_5P_2W_{18}O_{64}$	methanol	433	7	58.5MLA	This work	

Table S1 Hydrolysis of cellulose comparision with recently reported chemical procedures.

Catalysts	Elementary results (experiment value in parenthesis)/%					
	Н	С	Ν	Р	W	content
						[mol·kg ⁻¹]
$[C_{16}H_{33}N(CH_3)_3] H_5P_2W_{18}O_{62}$	1.02(1.10)	4.90(4.81)	0.30(0.29)	1.33(1.21)	71.12(71.45)	3.2
$[C_{16}H_{33}N(CH_3)_3]_2H_4P_2W_{18}O_{62}$	1.80(1.64)	9.25(8.43)	0.57(0.49)	1.26(1.22)	67.04(67.97)	2.8
$[C_{16}H_{33}N(CH_3)_3]_3H_3P_2W_{18}O_{62}$	2.49(2.52)	13.12(14.56)	0.81(0.76)	1.19(1.22)	63.40(62.70)	2.1
$[C_{16}H_{33}N(CH_3)_3]_4H_2P_2W_{18}O_{62}$	3.11(3.28)	16.59(15.44)	1.02(0.83)	1.13(1.31)	60.13(60.68)	1.5
$[C_{16}H_{33}N(CH_3)_3]_5HP_2W_{18}O_{62}$	3.68(3.53)	19.72(18.26)	1.21(1.09)	1.07(1.24)	57.18(59.70)	1.1
$[C_{16}H_{33}N(CH_3)_3]_6P_2W_{18}O_{62}$	4.18(4.10)	22.56(23.50)	1.38(1.29)	1.02(1.17)	54.51(54.69)	0.6

Table S2 The elemental analysis of $(C_{16}TA)_nH_{6-n}P_2W_{18}O_{62}$ and acid contents

Medium	Epa	Epc	Amout	P_{O2}	Conversion	Yield
	(V)	(V)	(mmol)	(MPa)	(%)	(%)
$1 M H_2 SO_4$	-0.04	-0.10	0.07	1.0	41.2	28.2 ^b
	-0.30	-0.36			51.8	29.1 ^c
pH=5	0.02	-0.05	0.07	1.0	66.1	29.9 ^b
	-0.16	-0.22			91.2	21.1 ^c
	-0.55	-0.61				
	-0.68	-0.75				
	Medium 1 <i>M</i> H ₂ SO ₄ pH=5	Medium Epa (V) (V) $1 M H_2 SO_4$ -0.04 -0.30 -0.16 -0.55 -0.68	MediumEpaEpc (V) (V) $1 M H_2 SO_4$ -0.04 -0.10 -0.30 -0.36 $pH=5$ 0.02 -0.05 -0.16 -0.22 -0.55 -0.61 -0.68 -0.75	$\begin{array}{c cccc} \mbox{Medium} & \mbox{Epa} & \mbox{Epc} & \mbox{Amout} \\ (V) & (V) & (mmol) \\ \mbox{1 M H_2SO_4$} & -0.04 & -0.10 & 0.07 \\ & -0.30 & -0.36 & \\ & -0.30 & -0.36 & \\ & \mbox{-0.36} & \\ \mbox{p $H=5$} & 0.02 & -0.05 & 0.07 \\ & -0.16 & -0.22 & \\ & -0.55 & -0.61 & \\ & -0.68 & -0.75 & \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Medium Epa Epc Amout P_{02} Conversion (V) (V) (mmol) (MPa) (%) 1 M H ₂ SO ₄ -0.04 -0.10 0.07 1.0 41.2 -0.30 -0.36 51.8 51.8 pH=5 0.02 -0.05 0.07 1.0 66.1 -0.16 -0.22 91.2 91.2 -0.55 -0.61 -0.75 91.2

Table S3 Voltammetric data^a for heteropolytungstates using a wax-impregnated graphite electrode

^aAnion concentration 1.0 mM; sweep rate 0.5 V min⁻¹; all reductions are one-electron processes.

^b Reaction condition: 100 mg of cellulose, 5 mL water at 160 °C in 3 h and in O₂ for 10 min.

 c Reaction condition: 100 mg of cellulose, 5 mL water at 160 °C in 3 h and in O_{2} for 30 min.

References

- 1 A. Takagaki, C. Tagusagawa, K. Domen, Chem.Commun., 2008, 5363.
- 2 F. Zhang, X. Deng, Z. Fang, H. Zeng, X. Tian, J. Kozinski, Petrochem. Technol., 2011, 40, 43.
- 3 R. Rinaldi, R. Palkovits and F. Schüth, Angew. Chem., Int. Ed., 2008, 47, 8047.
- 4 L. Shuai, Q. Yang, J. Y. Zhu, F. C. Lu, P. J. Weimer, J. Ralph, X. J. Pan, Bioresour. Technol., 2010,101, 3106.
- 5 L. Shuai and X. Pan, Energy Environ. Sci., 2012, 5, 6889.
- 6 S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara, J. Am. Chem. Soc., 2008, 130, 12787.
- 7 S. Kim, A. A. Dwiatmoko, J. W. Choi, Y. Suh, D. J. Suh, M. Oh, Bioresour. Technol., 2010,101, 8273.
- 8 J. Hegner, K. C. Pereira, B. DeBoef, B. L. Lucht, Tetrahedron Lett., 2010,51, 2356.
- 9 G. Akiyama, R. Matsuda, H. Sato, M. Takata, S. Kitagawa, Adv. Mater., 2011, 23, 3294.
- 10 Y. Wu, Z. Fu, D. Yin, Q. Xu, F. Liu, C. Lu, L. Mao, Green Chem., 2010, 12, 696.
- 11 Y. Jiang, X. Li, X. Wang, L. Meng, H. Wang, G. Peng, X. Wang, X. Mu, Green Chem., 2012, 14, 2162.
- 12 H. Guo, X. Qi, L. Li, R. L. Smith Jr., Bioresour. Technol., 2012, 116, 355.
- 13 J. Pang, A. Wang, M. Zheng, T. Zhang, Chem. Commun., 2010, 46, 6935.
- 14 S. V. de Vyver, L. Peng, J. Geboers, H. Schepers, F. de Clippel, C. J. Gommes, B. Goderis, P. A. Jacobs, B. F. Sels, Green Chem., 2010, 12, 1560.
- 15 K. Shimizu, H. Furukawa, N. Kobayashi, Y. Itayab, A. Satsuma, Green Chem., 2009, 11, 1627.
- 16 J. Tian, J. Wang, S. Zhao, C. Jiang, X. Zhang, X. Wang, Cellulose, 2010, 17, 587.
- 17 Y. Ogasawara, S. Itagaki, K. Yamaguchi, N. Mizuno, ChemSusChem, 2011, 4, 519.
- 18 X. Li, Y. Jiang, L. Wang, L. Meng, W. Wang, X. Mu, RSC Adv., 2012, 2, 6921.
- 19 M. Chenga, T. Shia, H. Guana, S. Wang, X. Wang, Z. Jiang, Appl. Catal., B, 2011, 107, 104.
- 20 Z. Sun, M. Cheng, H. Li, T. Shi, M. Yuan, X. Wang, Z. Jiang, RSC Adv., 2012, 2, 9058.
- 21 J. Tian, C. Fan, M. Cheng and X. Wang, Chem. Eng. Technol., 2011, 34, 482.
- 22 A. Onda, T. Ochi, K. Yanagisawa, Green Chem., 2008, 10, 1033.
- 23 Z. Zhang, Z. K. Zhao, Carbohydr. Res., 2009, 344, 2069.
- 24 H. Caia, C. Li, A. Wang, G. Xua, T. Zhang, Appl. Catal., B, 2012,123-124, 333.
- 25 D. Lai, L. Deng, Q. Guo, Y. Fu, Energy Environ. Sci., 2011, 4, 3552.
- 26 A. Takagaki, M. Nishimura, S. Nishimura, K. Ebitani, Chem. Lett., 2011, 40, 1195.
- 27 H. Kobayashi, T. Komanoya, K. Hara and A. Fukuoka, ChemSusChem, 2010, 3, 440.
- 28 T. Komanoya, H. Kobayashi, K. Hara, W. J. Chun, A. Fukuoka, Appl. Catal. A. Gen., 2011, 407, 188.
- 29 F. Zhang and Z. Fang, Bioresour. Technol., 2012, 124, 440.
- 30 H. T. Vo, V.T. Widyaya, J. Jae, H. S. Kim, H. Lee, Bioresour. Technol., 2014, 167, 484.
- 31 F.J. Liu, R. K. Kamat, I. Noshadi, D.Peck, R. S. Parnas, A. Zheng, C.Z. Qi, Y. Lin, Chem. Commun., 2013, 49, 8456.
- 32 J.Chen, X.L. Fang, X.P. Duan, L.M. Ye, H.Q. Lin, Y.Z. Yuan, Green Chem., 2014, 16, 294.
- 33 H. Kobayashi, M. Yabushita, T. Komanoya, K. Hara, I. Fujita, A.Fukuoka, ACS Catal. 2013, 3, 581-587.
- 34 Yong Zuo, Ying Zhang, Yao Fu, ChemCatChem 2014, 6, 753 757

35 Hilda Gómez Bernal, Luca Bernazzani, Anna Maria Raspolli Gallett, Green Chem. 2014,16, 3734-3740