Electronic Supplementary Information (ESI)

for

New Thieno[3,2-*b*][1]benzothiophene-Based Organic Sensitizers Containing π -Extended Thiophene Spacers for Efficient Dye-Sensitized Solar Cells

Yu Kyung Eom^a, Sung Ho Kang^a, In Taek Choi^a, Eunji Kim^b, Jeongho Kim^b, Myung Jong Ju^a and Hwan Kyu Kim^a.*

^aGlobal GET-Future Lab. & Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 339-700, Korea, E-mail: <u>hkk777@korea.ac.kr</u>

^bDepartment of Chemistry, Inha University, 100 Inha-ro, Incheon 402-751, Korea

Electronic supplementary information (ESI) available. See DOI:

Figure S1. Dihedral angles, total lengths and π -spacer lengths for all sensitizers.

Figure S2. Cyclic voltammograms measured with the dye-coated TiO₂ films.

The oxidation potentials of dyes on TiO₂ were measured in CH₃CN with 0.1 M tetra-*n*-butylammonium hexafluorophosphate (TBAPF₆) as the inert electrolyte, using a three-electrode system (e.g. dye-coated TiO₂ film as the working electrode, Pt wire as the counter electrode and Ag/Ag⁺ as the reference electrode). The potential of the reference electrode was calibrated with Fc/Fc⁺ as an external reference using E_0 (Fc/Fc⁺) = 0.63 V vs. NHE.

Figure S3. τ_r (a) and τ_n (b) values derived from IMVS and IMPS of the DSSCs as a function of light intensity, respectively. (c) The η_{cc} values obtained from IMVS and IMPS measurements for the same DSSCs.

To again prove the electron transport and recombination of the SGT sensitizer-based DSSCs, IMVS and IMPS measurements were performed. The electron-transport time (τ_n) or recombination time (τ_r) can be calculated from the expression, τ_n or $\tau_r = 1/2\pi f_n$ or r, where f_n or f_r is the characteristic frequency minimum in the Nyquist plots of the IMVS and IMPS results. **Figures S3a and S3b** show the τ_r and τ_n curves as a function of light intensity. The τ_r values from IMVS were in the order of **SGT-125** < **SGT-121** < **SGT-123**, which is in agreement with the EIS measurements, which led to the higher V_{oc} of the **SGT-123**-based DSSC. The τ_r and τ_n values for the **SGT-127**-based DSSC were incommensurable with those of other sensitisers, owing to the weak light intensity. The η_{ec} results under different light intensities for all DSSCs are displayed in **Figure S3c**, which are also consistent with the η_{ec} values obtained from EIS results.

Figure S4. Cyclic voltammograms obtained with the dye-coated TiO_2 electrodes in 0.1 M LiClO₄ dissolved in acetonitrile at a scan rate of 50 mV s⁻¹ at room temperature

Figure S5. ¹H NMR spectrum of compound 3a in CDCl₃

Figure S6. ¹H NMR spectrum of compound **3b** in CDCl₃

Figure S7. ¹H NMR spectrum of compound 3c in CDCl₃

Figure S8. ¹H NMR spectrum of compound 4b in CDCl₃

Figure S9. ¹H NMR spectrum of compound 4c in CDCl₃

Figure S10. ¹H NMR spectrum of compound 5 in CDCl₃

Figure S11. ¹H NMR spectrum of SGT-123 in CDCl₃

Figure S12. ¹³C NMR spectrum of SGT-123 in DMSO-*d*₆

Figure S13. ¹H NMR spectrum of SGT-125 in CDCl₃

Figure S14. ¹H NMR spectrum of SGT-125 in DMSO-*d*₆

Figure S15. ¹H NMR spectrum of SGT-127 in CDCl₃

Figure S16. ¹H NMR spectrum of SGT-127 in DMSO-*d*₆

Figure S17. MALDI-TOF spectrum of SGT-123

Figure S18. MALDI-TOF spectrum of SGT-125

Figure S19. MALDI-TOF spectrum of SGT-127