CIELab Chromaticity Evolution to Measure Binding Free Energy of Non-colored Biomolecules to Gold Nanoparticles.

R. Prado-Gotora*, A. Jimenez-Ruiza*, J.M. Carnereroa, E. Gruesoa, I. Villaa

^a Department of Physical Chemistry, University of Seville. C/Profesor García González, s/n. 41012 Seville (Spain). pradogotor@us.es, ailjimrui@alum.us.es

Supporting Information

Obtention of CIELab parameters

XYZ colorimetric parameters were obtained from experimental measurements by using the following mathematical expressions:

$$X = K \sum_{\lambda} T_{\lambda} S_{\lambda} \bar{X}_{10(\lambda)} \Delta_{\lambda}$$
$$Y = K \sum_{\lambda} T_{\lambda} S_{\lambda} \bar{Y}_{10(\lambda)} \Delta_{\lambda}$$
$$Z = K \sum_{\lambda} T_{\lambda} S_{\lambda} \bar{Z}_{10(\lambda)} \Delta_{\lambda}$$
$$K = 100 / \sum_{\lambda} S_{\lambda} \bar{Y}_{10(\lambda)} \Delta_{\lambda}$$

where T_{λ} is the transmittance of the sample; S_{λ} is a coefficient which depends on both λ and the illuminant (in our case, a D65 illuminant was employed) and $X_{10(\lambda)}$, $Y_{10(\lambda)}$, $Z_{10(\lambda)}$ are functions of both λ and the observer. Conversion from XYZ values to L*a*b* was done directly by using white point values for the D65 illuminant and 10° observer:²

$$X_n = 94.825; Y_n = 100; Z_n = 107.38$$

L*a*b* values were calculated as follows:³

$$L^* = 116 (Y/Y_n)^{1/3} - 16$$

$$a^* = 500[f(X/X_n) - f(Y/Y_n)]$$

$$b^* = 200[f(Y/Y_n) - f(Z/Z_n)]$$

where:

 $f(X/X_n) = (X/X_n)^{1/3}$

$$f(Y/Y_n) = (Y/Y_n)^{1/3}$$

$$f(Z/Z_n) = (Z/Z_n)^{1/3}$$

Figures

Figure S1. Size distribution of synthesized AuNPs.

Figure S2. Wavelength shift ($\Delta\lambda$) of the maximum intensity absorbance peak for solutions containing [AuNPs] = 3.2 x 10⁻¹⁰ M and varying concentrations of a) lysine, b) thiourea.

Figure S3. a* and b* parameters for a series of $[AuNPs] = 3.2 \times 10^{-10}$ M solutions containing a) lysine and b) thiourea. Green-colored points indicate negative values of a* which account for a green tone in the CIELab color system, and are indicative of fully blue (as opposed to purple) nanoparticle solutions.

Figure S4. Two-state model fitting for normalized a* and b* (shown in the inset) parameters of AuNPs/biomolecule solutions. a) [AuNPs] = $3.2x10^{-10}$ M; [Lysine] = $2.5x10^{-3}$ - $2x10^{-2}$ M, b) [AuNPs] = $3.2x10^{-10}$ M; [Thiourea] = $0 - 1x10^{-5}$ M.

Figure S5. Two-state model fit for the red (non-aggregated) deconvolution peak area for a) a series of AuNPs/lysine solutions ranging from [Lysine] = $2.5 \times 10^{-3} - 2 \times 10^{-2}$ M and b) a series of AuNPs/thiourea solutions ranging from [Thiourea] = $0 - 1 \times 10^{-5}$ M.

Figure S6. Benesi-Hildebrand fit for the normalized red peak area obtained from deconvolution procedures for a) AuNPs/lysine solutions ranging from [Lysine] = 8.5×10^{-3} to 2×10^{-2} M and b) AuNPs/thiourea solutions ranging from [Thiourea] = 6×10^{-7} to 5×10^{-6} M.

Figure S7. Benesi-Hildebrand fit for a* and b* (shown on inset) for a series of AuNPs solutions ranging from a) [Lysine] = $6x10^{-3}$ to $9x10^{-3}$ M and b) [Thiourea] = $5x10^{-7}$ to $1x10^{-5}$ M.