Electronic Supplementary Information

Altering Synthetic Fragments to Tune the AIE Properties and

Self-assemble Grid-like Structures of TPE-based Oxacalixarenes

Zhen Wang,^{‡a} Hong Cheng,^{‡b} Tian-Long Zhai,^a Xianggao Meng*^c and Chun Zhang*^a

^aCollege of Life Science and Technology, Huazhong University of Science and Technology, and National Engineering Research Center for Nanomedicine, Wuhan, 430074, China.

^b Analytical and Testing Center, Huazhong University of Science and Technology, Wuhan, 430074, China.

^c School of Chemistry, Central China Normal University, Wuhan 430079, China.

Email: chunzhang@hust.edu.cn

1.	¹ H NMR and ¹³ C NMR spectra of 1a and 1b	-S2
2.	IR spectra of 1a and 1b	-S4
3.	Crystal structures of 1a	S5
4.	Crystal structures of 1b	S5
5.	The Self-assemblies of 1a in water/THF	S6
6.	Fluorescent titration experiments of 1a	S7

1. ¹H NMR and ¹³C NMR spectra of 1a and 1b

Fig. S1 ¹H NMR spectrum (600 MHz, CDCl₃) of 1a.

Fig. S2 ¹³C NMR spectrum (150 MHz, CDCl₃) of 1a.

Fig. S3 ¹H NMR spectrum (600 MHz, CDCl₃) of 1b.

Fig. S4 ¹³C NMR spectrum (150 MHz, CDCl₃) of 1b.

2. IR spectra of 1a and 1b

Fig. S5 IR spectrum of 1a.

Fig. S6 IR spectrum of 1b.

3. Crystal structure of 1a.

Fig.S7 The dimmer structures (a), and one-dimensional linear grid structure (c) of

oxacalixarene 1a.

Fig. S8 The dimmer structures (a), the grid-like pore A (b) and one-dimensional linear grid structure (c) of oxacalixarene 1b.

4. Crystal structure of 1b.

Fig. S9 The grid-like pore B (a) and two-dimensional grid structure (b) of oxacalixarene 1b.

5. The Self-assemblies of 1a in water/THF

Fig.S10 The hydrodynamic size (a) and TEM image (b) of **1a** in water/THF (95/5) with concentration of 0.1 mg/mL.

Fig. S11 (a) Emission spectra ($\lambda_{ex} = 350 \text{ nm}$) of 1a (4.5 × 10⁻⁶ M) in presence of TNP at various concentration (0, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 equiv.). (b) The nonlinear curve-fitting for the quenching constant of 1a with TNP.

Fig.S12 (a) Emission spectra ($\lambda_{ex} = 350 \text{ nm}$) of **1a** ($4.5 \times 10^{-6} \text{ M}$) in presence of DNP at various concentration (0, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 equiv.). (b) The nonlinear curve-fitting for the quenching constant of **1a** with DNP.

Fig. S13 (a) Emission spectra ($\lambda_{ex} = 350 \text{ nm}$) of **1a** ($4.5 \times 10^{-6} \text{ M}$) in presence of *p*-NP at various concentration (0, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 equiv.). (b) The nonlinear curve-fitting for the quenching constant of **1a** with *p*-NP.

Fig. S14 (a) Emission spectra ($\lambda_{ex} = 350 \text{ nm}$) of 1a (4.5 × 10⁻⁶ M) in presence of *o*-NP at various concentration (0, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 equiv.). (b) The nonlinear curve-fitting for the quenching constant of 1a with *o*-NP.

Fig. S15 (a) Emission spectra ($\lambda_{ex} = 350 \text{ nm}$) of **1a** ($4.5 \times 10^{-6} \text{ M}$) in presence of *m*-NP at various concentration (0, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 equiv.). (b) The nonlinear curve-fitting for the quenching constant of **1a** with *m*-NP.

Fig. S16 (a) Emission spectra ($\lambda_{ex} = 350 \text{ nm}$) of **1a** ($4.5 \times 10^{-6} \text{ M}$) in presence of NT at various concentration (0, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 equiv.). (b) The nonlinear curve-fitting for the quenching constant of **1a** with NT.

Fig. S17 (a) Emission spectra ($\lambda_{ex} = 350 \text{ nm}$) of 1a ($4.5 \times 10^{-6} \text{ M}$) in presence of NBA at various concentration (0, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 equiv.). (b) The nonlinear curve-fitting for the quenching constant of 1a with NBA.

Fig S18 (a) Emission spectra ($\lambda_{ex} = 350 \text{ nm}$) of 1a (4.5 × 10⁻⁶ M) in presence of BA at various concentration (0, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 equiv.). (b) The nonlinear curve-fitting for the quenching constant of 1a with BA.

Fig. S19 (a) Emission spectra ($\lambda_{ex} = 350 \text{ nm}$) of **1a** ($4.5 \times 10^{-6} \text{ M}$) in presence of PH at various concentration (0, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 equiv.). (b) The nonlinear curve-fitting for the quenching constant of **1a** with PH.

Quencher	TNP	DNP	<i>p</i> -NP	o-NP	<i>m</i> -NP	NT	NBA	BA	PH
K (M ⁻¹)	1.7×10 ⁴	5.8×10 ³	6.0×10 ³	5.2×10 ³	5.4×10 ³	1.6×10 ³	1.3×10 ³	1.6×10 ²	1.3×10 ²

Table S1. Summary of fluorescence quenching constants of 1a.

Fig. S20 Changes in the fluorescence spectra of 1a (5.0×10^{-7} M) with different concentrations of TNP.