Synthesis of high-concentration B and N co-doped porous carbon polyhedra and their supercapacitive properties

Fei Hao,^a Yue Yao,^a Yapeng Li,^a Chunxia Tian,^a Xiaohua Zhang^{a*}, Jinhua Chen^{a*}

^a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China

Tel./Fax: +86-731-88821818; E-mail address: chenjinhua@hnu.edu.cn.

Supporting Information

Table S1. Element distributions and porous textures of BN-PCPs and N-PCPs obtained from

XPS	analysis	and nitroge	en adsorption-	-desorption	isotherms.
-----	----------	-------------	----------------	-------------	------------

Sample	At% C	At% N	At% O	At% B	S_{BET} $[m^2 g^{-1}]$	S_{micro} $[m^2 g^{-1}]$	Average Pore Diameter [nm]	Pore Volumes [cm ³ g ⁻¹]
N-PCPs	90.45	5.05	4.5	-	612	537	2.4	0.37
BN-PCPs	67.06	8.10	14.16	10.68	57	5	7.2	0.10

Table S2. The values of the specific capacitances of different porous carbons reported in the literatures using three-electrode systems.

Material	Electrolyte	Potential range / V	Scan rate / mV s ⁻¹	Capacitance/ F g ⁻¹	N or/and B content	Ref.			
MOF-derived porous carbons									
BN-PCPs	1.0 M H ₂ SO ₄	-0.1-0.7	20	262 F g ⁻¹	N (8.10 at. %)	This			
					B (10.68 at. %)	work			
N-PCPs	1.0 M H ₂ SO ₄	-0.1-0.7	20	84 F g ⁻¹	N (5.05 at. %)	This			
						work			
Z-900	$0.5 \text{ M H}_2\text{SO}_4$	-0.2-1.0	20	158 F g ⁻¹	/	S1			
NPC-800	$0.5 \text{ M H}_2\text{SO}_4$	0.0-0.8	20	238 F g ⁻¹	N (0.80 wt. %)	S2			
CZIF69a	0.5 M H ₂ SO ₄	-0.241-0.759	20	156 F g ⁻¹	N (1.20 wt. %)	S3			
B-doped porous carbons									
BNC-7	6.0 M KOH	-0.90.1	20	149 F g ⁻¹	N (9.20 at. %)	S4			
					B (9.60 at. %)				
	6.0 M KOH	-0.90.1	20	172 F g ⁻¹	N (7.10 at. %)	54			
BINC-9					B (8.40 at. %)	54			

BNC-15	6.0 M KOH	-0.90.1	20	151 F g ⁻¹	N (4.90 at. %) B (4.80 at. %)	S4			
K-BPC	1.0 M Na ₂ SO ₄	-0.4-0.6	20	139 F g ⁻¹	B (0.034 at. %)	S5			
Carbon aerogel-derived carbons									
COU-2	1.0 M H ₂ SO ₄	-0.2-0.8	5	175 F g ⁻¹	Without N or B doping	S6			
K-COU-2	1.0 M H ₂ SO ₄	-0.2-0.8	5	225 F g ⁻¹	Without N or B doping	S6			

References

S1. W. Chaikittisilp, M. Hu, H. Wang, H.-S. Huang, T. Fujita, K.C.-W. Wu, L.-C. Chen, Y. Yamauchi and K. Ariga, Chem. Commun., 2012, 48, 7259–7261.

S2. N.L. Torad, R.R. Salunkhe, Y. Li, H. Hamoudi, M. Imura, Y. Sakka, C.-C. Hu and Y. Yamauchi, Chem. Eur. J., 2014, 20, 7895–7900.

S3. Q. Wang, W. Xia, W. Guo, L. An, D. Xia and R. Zou, Chem. Asian J., 2013, 8, 1879–1885.

S4. H. Guo and Q. Gao, J. Power Sources, 2009, 186, 551-556.

S5. J. Zhang, J. W. Lee, ACS Sustainable Chemistry & Engineering, 2014, 2, 735-740.

S6. J. Jin, S. Tanaka, Y. Egashira and N. Nishiyama, Carbon, 2010, 48, 1985-1989.