Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Solvothermal synthesis of GO/V₂O₅ composite as cathode material for rechargeable magnesium batteries

Xinchuan Du,^{ac} Gang Huang^{ac}, Yuling Qin^{ac} and Limin Wang^{ab*}

 ^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
 E-mail: Imwang@ciac.ac.cn; Fax: +86 431 85262836; Tel: +86 431 85262447
 ^b Changzhou, Institute of Energy Storage Materials & Devices

^b Changzhou Institute of Energy Storage Materials & Devices, Changzhou 213000, Jiangsu, China

^c University of the Chinese Academy of Sciences, Beijing 100049, China

Experimental

Synthesis of GO/V_2O_5 composites. The GO/V_2O_5 composites synthetic route is illustrated in Fig. 1. 10 mg of graphene oxides (GO), which was freeze-dried for 24h, was dispersed in 35 mL of isopropanol (IPA) by ultrasonication for 2h, followed by addition of 200 µL of vanadium oxytriisopropoxide (VOT) to form a homogeneous solution. Finally, all the mixture solution was transferred into a 50 mL Teflon-lined stainlesssteel autoclave, sealed and heated in an oven at 200 °C for 12h. The precipitate was collected by centrifugation, washed thoroughly with isopropanol (IPA) and deionized water several times. Ultimately, GO/V_2O_5 composites were obtained from a calcinating process at 800 °C in Ar.

Synthesis of electrolyte. The electrolyte solution of rechargeable Mg batteries comprises THF and a 0.25 M complex electrolyte of the Mg(AlCl₂BuEt)₂ formal stoichiometry, which was prepared by reacting MgBu₂ and AlCl₂Et at a ratio of 1:2 in THF solution.¹

Synthesis of GO. Using an improved method of Hummers' method to prepare graphitic oxide (GO),^{2,3} the product was freeze-dried to reserve.

Calculation of the specific capacity.

Based on the equation mentioned in the paper:

 $xMg + V_2O_5 \leftrightarrow Mg_xV_2O_5 \tag{1}$

The theoretical specific capacity (C_0) :

 C_0

$$C_0 = \frac{N_A \times e \times z \times m}{t \times M_W} \tag{2}$$

The specific capacity of GO/V_2O_5 composite (when the x = 0.66, the most hosts⁴):

$$=\frac{6.02 \times 10^{23} \,mol^{-1} \times 1.6 \times 10^{-3}}{3600 \,s \times h^{-1} \times 182 \,g}$$

Then as-prepared GO/V_2O_5 composite as cathode material for rechargeable Mg batteries could host how much (*y*) Mg ions per formula unit.

$$y = \frac{178 \ mAh/g}{194 \ mAh/g} \times 0.66 = 0.60$$

Figure S1. Schematic illustration of experimental battery.

Figure S2. The X-ray diffraction (XRD) pattern of as-synthesized precursors of GO/V₂O₅ composites.

Figure S3. XRD patterns of GO/V_2O_5 composites calcined at 400 °C (a)

and 600 °C (b).

Figure S4. SEM images of GO/V_2O_5 composites calcined at 400 °C (a)

(b) and 600 °C **(c) (d)**.

Figure S5. TG curve of GO/V_2O_5 composites followed the heat treatment

process from R.T. to 800 °C at a heating rate of 10 °C min⁻¹.

Figure S6. SEM images of V_2O_5 prepared without GO.

Figure S7. Electrochemical properties of V_2O_5 prepared without GO.

Figure S8. Electrochemical impedance spectra for the samples of V_2O_5 and GO/V_2O_5 electrodes.

Figure S9. Cycling performance of GO/V_2O_5 electrodes at different rates.

Table S1. Cycling performance of GO/V₂O₅ composites and previously

Type of materials	Capacity (mAh/g)	Rate	Electrolyte	Ref.
V_2O_5	194 (theoretical)	_	1.0M Mg(ClO ₄) ₂ /THF	5
V ₂ O ₅ /TC ₂₅	170 ^{1st}	0.02 mV/s	1.0M Mg(ClO ₄) ₂ /H ₂ O/AN	6
V_2O_5/H_2O aerogels	_	0.1 mV/s	1.0M LiClO ₄ /PC	7
V ₂ O ₅ nanotubes	80 ^{1st}	1.0 mA/g	0.25M Mg(AlCl ₂ EtBu) ₂ /THF	8
$Cu_{0.1}VO_x$ nanotubes	170 ^{1st}	10 mA/g	0.25M Mg(AlCl ₂ EtBu) ₂ /THF	9
V ₂ O ₅ film	146 ^{1st}	$0.5 \ \mu A/cm^2$	0.1M MgTFSI ₂ /AN	10
VOC1/C	60/53 rd	5.0 mA/g	0.5M PP ₁₄ Cl/PP ₁₄ TFSI	11
GO/V_2O_5	178 ^{1st}	0.2 C	0.25M Mg(AlCl ₂ EtBu) ₂ /THF	This
	$140/20^{th}$			work

reported	V ₂ O ₅ -based	materials	for Mg	batteries.
----------	--------------------------------------	-----------	--------	------------

Figure S10. Raman spectra of GO in GO/V_2O_5 composites calcined at

800 °C.

Figure S11. SEM images of (a) Mg anode and (b) GO/V_2O_5 composite cathode after 20th.

Reference:

- D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich and E. Levi, *Nature*, 2000, 407, 724.
- S. William, Hummers and Richard E Offeman, J. Am. Chem. Soc., 1958, 80, 1339.
- D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Z. Sun,
 A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour, *ACS Nano.*, 2010,
 4, 4806.
- 4. J. Muldoon, C. B. Bucur, and T. Gregory, Chem. Rev., 2014, 114, 683.
- D. Gregory, J. Hoffman and C. Winterton, *J. Electrochem. Soc.*, 1990, 137, 775.
- L. Jiao, H. Yuan, Y. Si, Y. Wang and Y. Wang, *Electrochem.* Commun., 2006, 8, 1041.
- L. Jiao, H. Yuan, Y. Wang, J. Cao and Y. Wang, *Electrochem.* Commun., 2005, 7, 431.
- B. Le, S. Passerini, F. Coustier, J. Guo, T. Soderstrom, B. B. Owens and W. H. Smyrl, *Chem. Mater.*, 1998, 10, 682.
- 9. P. Novák and J. Desilvestro, J. Electrochem. Soc., 1993, 140, 140.
- G. Gershinsky, H. Yoo, Y. Gofer and D. Aurbach, *Langmuir*, 2013, 29, 10964.
- 11.P. Gao, X. Zhao, Z. Zhao-Karger, T. Diemant, R. Behm and M. Fichtner, ACS Appl Mater Interfaces., 2014, 6, 22430.