Supporting information

Highly Practical Sodium(I)/ Azobenzene Catalyst System for

Aerobic Oxidation of benzylic Alcohols

Chengkou Liu,^a Zheng Fang,^a Zhao Yang,^b Qingwen Li,^a Shiyu Guo,^a and Kai Guo^{a,c,*}

^aCollege of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road, Nanjing, 211816, China
^bCollege of Engineering China Pharmaceutical University, 24 Tongjiaxiang, NanJing, 210003, China
^cState Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech
University, 30 Puzhu South Road, Nanjing, 211816, China

Table of Contents:

- 1, General Remarks
- 2, Table S1: The equivalent of NaBr screening

3, General procedure for the oxidation of benzylic alcohols to ketones and aldehydes

- 4, General procedure for the oxidation of benzylic 1° alcohols to acids
- 5, Characterization Data of the products
- 6, ¹H spectra
- 7, References

1, General Remarks

Reagents and solvents: Commercially available reagents were used without any further purification. All organic solvents were of reagent grade quality without any further purification.

Chromatography: Flash column chromatography was performed using Silicycle silica gel (200-300 mesh). Analytical thin-layer chromatography (TLC) was performed on 0.2 mm coated silica gel plates (HSGF 254) and visualized using a UV lamp (254 nm or 365 nm).

Nuclear Magnetic Resonance Spectroscopy: ¹H NMR was recorded on magnet system 400'54 ascend purchased from Bruker Biospin AG. ¹H NMR spectra chemical shifts (δ) are reported in parts per million (ppm) referenced to TMS (0 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, ddt = doublet of triplets, dtd = doublet of triplet of doublets, m = multiplet, br = broad), coupling constant (J) in Hertz (Hz), and integration.

		1a	- 2.	2a		
Entry	Catalyst (mol%)	Co-catalyst (equiv.)	Т (°С)	Solvent	T(h)	Yield (%)
1	Azobenzene(5)	NaBr(0.2)	80	1,4-Dioxane	48	trace
2	Azobenzene(5)	NaBr(0.5)	80	1,4-Dioxane	48	10
3	Azobenzene(5)	NaBr(1)	80	1,4-Dioxane	48	38
4	Azobenzene(5)	NaBr(2)	80	1,4-Dioxane	48	88
5	Azobenzene(5)	NaBr(3)	80	1,4-Dioxane	48	92

2, Table S1: The equivalent of NaBr screening

3, General procedure for the oxidation of benzylic alcohols to ketones and aldehydes

The specific benzylic alcohols (1 mmol, 1.0 eq) and sodium bromide (2 mmol, 2 eq) were dissolved in dioxane (3 mL), then azobenzene (0.05 mmol, 0.05 eq) was added to the reaction mixture and stirred for a certain time in a preheated oil batch at 80 $^{\circ}$ C under O₂ atmosphere (O₂ balloon). The reaction mixtures were diluted with ethyl acetate and washed with brine and water. The separated organic layers were dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate to afford the desired product.

4, General procedure for the oxidation of benzylic 1º alcohols to acids

The specific benzylic 1° alcohols (1 mmol, 1.0 eq) and sodium hydroxide (2 mmol, 2 eq) were dissolved in dioxane (3 mL). Then, azobenzene (0.05 mmol, 0.05 eq) was added to the reaction mixture and stirred for a certain time in a preheated oil batch at 80°C under O_2 atmosphere (O_2 balloon). The reaction mixtures were diluted with H_2O and regulated the pH to 1-2 by hydrochloric acid (10%, aq). The product was extracted by ethyl acetate or dichloromethane from the solution before. The separated organic layers were dried over by anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate or dichloromethane/methanol to afford the desired product.

Benzoic acid (3a), p-toluic acid (3e), 2-furoic acid (3f), 2-thiophenecarboxylic acid (3g)

The specific benzylic 1° alcohols (1 mmol, 1.0 eq) and sodium hydroxide (2 mmol, 2 eq) were dissolved in dioxane (3 mL). Then, azobenzene (0.05 mmol, 0.05 eq) was added to the reaction mixture and stirred for a certain time in a preheated oil batch at 80 °C under O_2 atmosphere (O_2 balloon). The reaction mixtures were diluted with H_2O and regulated the pH to 1-2 by hydrochloric acid (10%, aq). The product was extracted by ethyl acetate from the solution before. The separated organic layers were dried over by anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (2:1) to afford the desired product.

p-Nitrobenzoic acid (3b), 4-Chlorobenzoic acid (3c), 4-Bromobenzoic acid (3d)

The specific benzylic 1° alcohols (1 mmol, 1.0 eq) and sodium hydroxide (2 mmol, 2 eq) were dissolved in dioxane (3 mL). Then, azobenzene (0.05 mmol, 0.05 eq) was added to the reaction mixture and stirred for a certain time in a preheated oil batch at 80°C under O_2 atmosphere (O_2 balloon). The reaction mixtures were diluted with H_2O and regulated the pH to 1-2 by hydrochloric acid (10%, aq). The product was extracted by dichloromethane from the solution before. The separated organic layers were dried over by anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using dichloromethane/methanol (30:1) to afford the desired product.

Nicotinic acid (3h)

3-Pyridinemethanol (1 mmol, 1.0 eq) and sodium hydroxide (2 mmol, 2 eq) were dissolved in dioxane (3 mL). Then, azobenzene (0.05 mmol, 0.05 eq) was added to the reaction mixture and stirred for a certain time in a preheated oil batch at 80° C under O₂ atmosphere (O₂ balloon). The reaction mixtures were diluted with H₂O and regulated the pH to 3-4 by hydrochloric acid (10%, aq). The product was extracted by dichloromethane from the solution before. The separated organic layers were dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using dichloromethane/methanol (10:1) to afford the desired product.

5, Characterization Data of the products

All the products were characterized by ¹H NMR spectroscopy and compared with literature reported data.

Anisic aldehyde

¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 1H), 7.77 – 7.72 (m, 2H), 6.94 – 6.89 (m, 2H), 3.79 (s, 3H). Spectral data are in accordance with the literature report.^[1-2]

4-Chlorobenzaldehyde

¹H NMR (400 MHz, $CDCl_3$) δ 9.91 (s, 1H), 7.78 – 7.76 (m, 1H), 7.75 – 7.74 (m, 1H), 7.47 – 7.45 (m, 1H), 7.45 – 7.43 (m, 1H). Spectral data are in accordance with the literature report.^[1]

4'-Chloroacetophenone

¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.82 (m, 1H), 7.81 – 7.80 (m, 1H), 7.38 – 7.36 (m, 1H), 7.35 – 7.34 (m, 1H), 2.51 (s, 3H).

4-Bromobenzaldehyde

¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 7.68 (d, *J* = 8.3 Hz, 2H), 7.62 (d, *J* = 8.3 Hz, 2H).

Benzophenone

¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.78 (m, 4H), 7.62 – 7.56 (m, 2H), 7.52 – 7.46 (m, 4H). Spectral data are in accordance with the literature report.^[2]

2, 6-Dichlorobenzaldehyde.

 1H NMR (400 MHz, CDCl₃) δ 10.43 (s, 1H), 7.33 (s, 3H). Spectral data are in accordance with the literature report. $^{[1]}$

Furfural

¹H NMR (400 MHz, $CDCl_3$) δ 9.59 (s, 1H), 7.64 – 7.62 (m, 1H), 7.19 (dd, *J* = 3.6, 0.5 Hz, 1H), 6.54 (dd, *J* = 3.6, 2 Hz, 1H). Spectral data are in accordance with the literature report.^[3]

2-Acetylthiophene

¹H NMR (400 MHz, CDCl₃) δ 7.63 (dd, *J* = 3.8, 1.1 Hz, 1H), 7.57 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.06 (dd, *J* = 4.9, 3.8 Hz, 1H), 2.50 (s, 3H). Spectral data are in accordance with the literature report.^[3]

3-Acetylpyridine

¹H NMR (400 MHz, CDCl₃) δ 9.09 (d, *J* = 2.1 Hz, 1H), 8.71 (dd, *J* = 4.8, 1.6 Hz, 1H), 8.16 (dt, *J* = 8.0, 2.0 Hz, 1H), 7.36 (dd, *J* = 8.0, 4.8 Hz, 1H), 2.57 (s, 3H). Spectral data are in accordance with the literature report.^[4]

Benzaldehyde

¹H NMR (400 MHz, CDCl₃) δ 9.94 (s, 1H), 7.83 – 7.78 (m, 2H), 7.58 – 7.53 (m, 1H), 7.45 (t, *J* = 7.6 Hz, 2H). Spectral data are in accordance with the literature report.^[1]

2-Chlorobenzaldehyde

¹H NMR (400 MHz, $CDCl_3$) δ 10.41 (s, 1H), 7.84 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.37 (dd, *J* = 8.0, 0.9 Hz, 1H), 7.31 (t, *J* = 7.5 Hz, 1H).

m-Tolualdehyde

⁵ ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 7.58 (m, 2H), 7.37 – 7.30 (m, 2H), 2.33 (s, 3H).

3-Chlorobenzaldehyde

¹H NMR (400 MHz, CDCl₃) δ 9.90 (s, 1H), 7.77 (t, *J* = 1.6 Hz, 1H), 7.69 (dt, *J* = 7.6, 1.3 Hz, 1H), 7.52 (ddd, *J* = 8.0, 2.4, 1.2 Hz, 1H), 7.41 (t, *J* = 7.8 Hz, 1H).

p-Tolualdehyde

¹H NMR (400 MHz, CDCl₃) δ 9.88 (s, 1H), 7.69 (d, *J* = 8.1 Hz, 2H), 7.25 (d, *J* = 7.9 Hz, 2H), 2.36 (s, 3H). Spectral data are in accordance with the literature report.^[1]

Acetophenone

¹H NMR (400 MHz, $CDCl_3$) δ 7.88 (dt, *J* = 8.5, 1.7 Hz, 2H), 7.51 – 7.45 (m, 1H), 7.41 – 7.35 (m, 2H), 2.52 (s, 3H). Spectral data are in accordance with the literature report.^[1]

4-Fluoroacetophenone

¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.87 (m, 2H), 7.04 (m, 2H), 2.51 (s, 3H).

2-Acetylfuran

¹H NMR (400 MHz, $CDCl_3$) δ 7.53 – 7.51 (m, 1H), 7.12 (dd, *J* = 3.5, 0.8 Hz, 1H), 6.47 (dd, *J* = 3.5, 1.7 Hz, 1H), 2.41 (s, 3H). Spectral data are in accordance with the literature report.^[3]

2-Thenaldehyde

¹H NMR (400 MHz, $CDCl_3$) δ 9.87 (d, J = 1.2 Hz, 1H), 7.73 – 7.68 (m, 2H), 7.14 (dd, J = 4.8, 3.8 Hz, 1H). Spectral data are in accordance with the literature report.^[2]

3-Pyridinecarboxaldehyde

ò

¹H NMR (400 MHz, CDCl₃) δ 10.06 (s, 1H), 9.02 (dd, *J* = 1.6 Hz,0.4 Hz,1H), 8.78 (dd, *J* = 4.8, 1.6 Hz, 1H), 8.11 (dt, *J* = 7.9, 2.0 Hz, 1H), 7.43 (dd, *J* = 7.9, 4.8 Hz, 1H). Spectral data are in accordance with the literature report.^[1]

1-Tetralone

¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 7.6 Hz, 1H), 7.38 (td, *J* = 7.5, 1.3 Hz, 1H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.17 (t, *J* = 6.4 Hz, 1H), 2.88 (t, *J* = 6.1 Hz, 2H), 2.61 – 2.53 (t, *J* = 6 Hz, 2H), 2.10 – 2.01 (m, 2H).

1-Acetyl-4-formylbenzene

¹H NMR (400 MHz, CDCl₃) δ 10.04 (s, 1H), 8.04 (d, *J* = 8.3 Hz, 2H), 7.93 – 7.90 (m, 2H), 2.60 (s, 3H).

4-Bromobenzoic acid

Benzoic acid

¹H NMR (400 MHz, CDCl₃) δ 8.06 (dd, *J* = 8.2, 1.1 Hz, 2H), 7.58 – 7.52 (m, 1H), 7.41 (t, *J* = 7.7 Hz, 2H).

2-Furoic acid

¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 7.59 – 7.57 (m, 1H), 7.28 – 7.26 (m, 1H), 6.50 (dd, *J* = 3.5, 1.7 Hz, 1H).

4-Chlorobenzoic acid

^O
OH ¹H NMR (400 MHz, CDCl₃)
$$\delta$$
 7.97 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H).

p-Toluic acid

p-Nitrobenzoic acid

6, ¹H spectra

Yu-1 Yu-1

Yu-2 Yu-2

YH-11 YH-11

YH-13 YH-13

[≈]0 8

YH-16 YH-16

YH-23 YH-23

LQW-9 LQW-9

LG-3 LG-3

7, References

- [1] M. M. Hossain, S.-G. Shyu, Advanced Synthesis & Catalysis **2010**, 352, 3061-3068.
- [2] M. Iinuma, K. Moriyama, H. Togo, *Tetrahedron* **2013**, 69, 2961-2970.
- [3] X. Wang, D. Z. Wang, *Tetrahedron* **2011**, 67, 3406-3411.
- [4] K. Layek, H. Maheswaran, R. Arundhathi, M. L. Kantam, S. K. Bhargava, *Advanced Synthesis & Catalysis* **2011**, *353*, 606-616.
- [5] C. B. Tripathi, S. Mukherjee, Journal of Organic Chemistry 2012, 77, 1592-1598.