ONO Pincer type Pd(II) complexes: Synthesis, crystal structure and catalytic activity towards C-2 arylation of quinoline scaffolds

Vignesh Arumugam^{*a*}, Werner Kaminsky^{*b*} and Dharmaraj Nallasamy^{*a*}*

^aInorganic & Nanomaterials Research Laboratory, Department of Chemistry,

Bharathiar University, Coimbatore - 641 046, India.

^b Department of Chemistry, University of Washington, Seattle, Washington 98195,

USA.

E-mail: dharmaraj@buc.edu.in

Fax: +91 4222422387; Tel: +91 4222428319

Contents

Mechanism Pg. no. 2-3

Tables 1-4 Pg. no. 4-7

Unit cell packing diagrams of complexes Fig. 1-4, Pg. no. 8-11

Copies of ¹H &¹³C NMR of complexes Fig. 5 - Fig.12, Pg. no. 12-15

Copies of ¹H & ¹³C NMR of coupled products Fig.13 – Fig.60, Pg. 16–39

MECHANISM FOR THE SMC REACTION

In general, the pincer type ligand can increase the electron density at palladium(II) centers and promote the generation of the Pd(IV) species. Therefore, Pd(IV) intermediates are considered as the reactive species in the mechanism of the SMC reaction of aryl halides at above room-temperature. In addition, Pd(II)/Pd(IV) cycle helps facile reductive elimination from Pd(IV) intermediate. However, Pd(IV) intermediates are unstable and hence, could not be isolated.¹ In view of these facts and previous reports,^{2,3} a plausible mechanism for this reaction has been proposed in Scheme 2. In the first step, the active Pd(II) species I undergoes an oxidative addition of 2-chloroquinoline to form a Pd(IV) intermediate II followed by a metathetic exchange upon the addition of KOH to the intermediate II resulting in the formation of KCl and intermediate III. Subsequent transmetalation between Pd(IV) and the phenylboronic acid yielded intermediate IV that underwent a reductive elimination to afford respective 2-phenylquinoline *via* C–C sigma bond formation and regeneration of the active Pd(II) species.

Scheme 2. Plausible mechanism for SMC reaction of 2-chloroquinoline with phenylboronic acid.

References

- (a) H. Zhang and A. Lei, *Dalton Trans.*, 2011, **40**, 8745. (b) J. L. Bolliger, O. Blacque, C. M. Frech, *Chem. Eur. J.*, 2008, **14**, 7969.
- 2) A. Vignesh, W. Kaminsky, N. S. P. Bhuvanesh, N. Dharmaraj, *RSC Adv.*, 2015, 5, 59428.
- 3) (a) N. Miyaura and A. Suzuki, *Chem. Rev.*, 1995, 95, 2457. (b) A. J. J. Lennox and G. C. L. Jones, *Chem. Soc. Rev.*, 2014, 43, 412

Complex	1	2
Pd(1) - N(1)	1.995(2)	1.990(4)
Pd(1) - O(1)	1.9830(18)	1.976(2)
Pd(1) - O(2)	1.9998(18)	1.988(3)
Pd(1) - P(1)	2.2801(7)	2.2814(13)
N(1) - C(7)	1.274(4)	1.285(5)
O(1) - C(1)	1.320(3)	1.325(5)
O(2) - C(8)	1.301(3)	1.299(5)
N(1) - N(2)	1.401(3)	1.404(4)
N(2) - C(8)	1.324(4)	1.316(5)
C(7) - C(6)	1.438(4)	1.442(6)
C(1) - C(6)	1.420(4)	1.418(6)
N(1) - Pd(1) - O(1)	93.85(8)	94.33(12)
N(1) - Pd(1) - O(2)	80.44(8)	80.37(12)
O(1) - Pd(1) - O(2)	174.29(8)	174.30(13)
N(1) - Pd(1) - P(1)	174.77(7)	173.09(9)
O(1) - Pd(1) - P(1)	90.50(6)	91.38(10)
O(2) - Pd(1) - P(1)	95.20(6)	94.05(10)
C(7) - N(1) - Pd(1)	126.86(19)	126.4(3)
N(2) - C(8) - O(2)	125.3(2)	125.4(4)
N(2) - N(1) - Pd(1)	113.67(17)	113.8(2)

Table1. Selected bond lengths (Å) and angles (°) for the complexes 1 and 2

Table 2. Selected bond lengths (Å) and angles (°) for the complex 3

Complex	3
Pd(1) - N(1)	1.9858(16)
Pd(1) - O(1)	2.0055(14)
Pd(1) - O(2)	1.9686(14)
Pd(1) - P(1)	2.2950(5)
N(1) - C(8)	1.2780(3)
O(1) - C(9)	1.3070(2)
O(2) - C(1)	1.3170(2)
N(1) - N(2)	1.4040(2)
N(2) - C(9)	1.317(3)
C(8) - C(6)	1.420(3)
C(1) - C(6)	1.427(3)
N(1) - Pd(1) - O(1)	80.11(6)
N(1) - Pd(1) - O(2)	85.31(4)

O(1) - Pd(1) - O(2)	174.37(6)
N(1) - Pd(1) - P(1)	179.17(5)
O(1) - Pd(1) - P(1)	100.31(4)
O(2) - Pd(1) - P(1)	85.31(4)
C(8) - N(1) - Pd(1)	125.99(14)
N(2) - C(9) - O(1)	124.54(18)
N(2) - N(1) - Pd(1)	114.15(12)

Complex	4
Pd(1) – N(1)	1.993(4)
Pd(1) - O(1)	1.969(4)
Pd(1) - O(3)	1.991(4)
Pd(1) - P(1)	2.2885(14)
N(1) - C(1)	1.277(7)
O(1) - C(3)	1.311(6)
O(3) – C(9)	1.293(6)
N(1) - N(2)	1.395(6)
N(2) – C(9)	1.316(7)
C(1) - C(2)	1.430(8)
C(2) - C(3)	1.421(8)
N(1) - Pd(1) - O(1)	94.23(19)
N(1) - Pd(1) - O(3)	80.15(18)
O(1) - Pd(1) - O(3)	173.74(15)
N(1) - Pd(1) - P(1)	172.74(13)
O(1) - Pd(1) - P(1)	90.35(11)
O(3) - Pd(1) - P(1)	80.15(18)
C(1) - N(1) - Pd(1)	125.3(4)
N(2) – C(9)– O(3)	125.7(6)
N(2) - N(1) - Pd(1)	113.8(3)

Complex	1	2	3	4
CCDC number	1047924	1047925	1047926	1047927
Empirical formula	$C_{32}H_{25}N_2O_3PPd$	$C_{36}H_{27}N_2O_3PPd$	$C_{33} H_{27} N_2 O_4 P P d$	$C_{37}H_{29}N_2O_4PPd$
Formula weight	622.91	672.97	652.94	702.99
Temperature (K)	130(2)	130(2)	100(2)	100(2)
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P -1	P 2 ₁ /a	P 2 ₁ /c	P 2 ₁ /c
Unit cell dimensions	5			
a (Å)	9.2348(5)	8.8683(4)	11.0075(5)	15.087(2)
b (Å)	10.1529(5)	21.5484(10)	28.2609(12)	21.144(3)
c (Å)	15.3801(10)	15.2026(7)	8.8037(4)	9.3879(15)
α (°)	97.685(4)	90	90	90
β (°)	90.359(4)	96.079(3)	92.227(2)	94.528(8)
γ (°)	110.319(4)	90	90	90
Volume (Å ³)	1338.00(13)	2888.8(2)	2736.6(2)	2985.5(8)
Z	2	4	4	4
Density(calcula	1.546	1.547	1.585	1.564
ted) (Mg m^{-3})				
Absorption	0.791	0.739	0.780	0.721
coefficient (mm ⁻¹)				
F(000)	632	1368	1328	1432
Crystal size (mm ³)	0.35 x 0.30 x 0.09	0.40 x 0.25 x 0.20	0.30 x 0.15 x 0.10	0.45 x 0.15 x 0.02
Reflections	10984	12436	127872	40321
collected				
Independent	6588[R(int)=	7108 [R(int)	6828 [R(int)	5156 [R(int)
reflections	0.0576]	= 0.1187]	=0.0271] = 0.0930]	

Table 4. Crystal data and structure refinement for complexes 1-4

Max. and	0.9322 and	0.8663 and	0.9261 and	0.9857 and 0.7373
min. transmission	0.7693	0.7564	0.7997	
Refinement method	Full-matrix least- squares on F ²	Full-matrix least- squares on F ²	Full-matrix least- squares on F ²	Full-matrix least- squares on F ²
Data/restraints/ parameters	6588 / 0 / 355	7108 / 0 / 389	6828 / 0 / 374	5156 / 0 / 410
Goodness-of-fit or	n 1.051	0.935	1.174	1.082
Final R indices $[I > 2\sigma(I)]$ R indices (all data) Largest diff. peak and hole (e.Å ⁻³)	R1 = 0.0413 , wR2 = 0.0917 R1 = 0.0559 , wR2 = 0.0978 1.256 and -1.367	R1 = 0.0585, wR2 = 0.1137 R1 = 0.1147, wR2 = 0.1310 2.350 and -1.764	R1 = 0.0286, wR2 = 0.0642 R1 = 0.0301, wR2 = 0.0650 0.601 and -0.607	R1 = 0.0568, wR2 = 0.1004 R1 = 0.0964, wR2 = 0.1155 0.728 and -0.808

Fig. 1. Unit cell packing diagram of complex 1 with intra molecular hydrogen bonding.

Fig. 2. Unit cell packing diagram of complex 2 with intra molecular hydrogen bonding.

Fig. 3. Unit cell packing diagram of complex 3 with intra molecular hydrogen bonding.

Fig. 4. Unit cell packing diagram of complex 4 with intra molecular hydrogen bonding.

Fig. 6. ¹³C NMR spectrum of complex 1

Fig. 8. ¹³C NMR spectrum of complex 2

Fig. 10. 13 C NMR spectrum of complex 3

Fig. 12. ¹³C NMR spectrum of complex 4

Fig. 14. ¹³C NMR spectrum of 2-phenyl-quinoline (1a)

Fig. 16. ¹³C NMR spectrum of 2-*o*-tolylquinoline (1b)

Fig. 18. ¹³C NMR spectrum of 2-*p*-tolylquinoline (1c)

Fig. 22. ¹³C NMR spectrum of 2-(2-methoxy-phenyl)-quinoline (1e)

Fig. 24. ¹³C NMR spectrum of 2-(4-*tert*-butyl-phenyl)-quinoline (1f)

Fig. 26. ¹³C NMR spectrum of 3-quinolin-2-yl-phenol (1g)

Fig. 28. ¹³C NMR spectrum of 2-naphthalen-2-yl-quinoline (1h)

Fig. 30. ¹³C NMR spectrum of 2-biphenyl-4-yl-quinoline (1i)

Fig. 32. ¹³C NMR spectrum of 2-(4-bromo-phenyl)-quinoline (1j)

Fig. 34. ¹³C NMR spectrum of dimethyl-(4-quinolin-2-yl-phenyl)-amine (1k)

Fig. 36. ¹³C NMR spectrum of 1-(4-quinolin-2-yl-phenyl)-ethanone (1*l*)

Fig. 38. ¹³C NMR spectrum of 6-methyl-2-phenyl-quinoline (2a)

Fig. 40. ¹³C NMR spectrum of 6-methyl-2-*o*-tolyl-quinoline (2b)

Fig. 42. ¹³C NMR spectrum of 6-methyl-2-*p*-tolyl-quinoline (2c)

Fig. 44. ¹³C NMR spectrum of 2-(2, 3-dimethyl-phenyl)-6-methyl-quinoline (2d)

Fig. 46. ¹³C NMR spectrum of 2-(2-methoxy-phenyl)-6-methyl-quinoline (2e)

Fig. 48. ¹³C NMR spectrum of 2-(4-*tert*-butyl-phenyl)-6-methyl-quinoline (2f)

Fig. 50. ¹³C NMR spectrum of 3-(6-methyl-quinolin-2-yl)-phenol (2g)

Fig. 52. ¹³C NMR spectrum of 6-methyl-2-naphthalen-2-yl-quinoline (2h)

Fig. 54. ¹³C NMR spectrum of 2-biphenyl-4-yl-6-methyl-quinoline (2i)

Fig. 56. ¹³C NMR spectrum of 2-(4-bromo-phenyl)-6-methyl-quinoline (2j)

Fig. 57. ¹H NMR spectrum of dimethyl-[4-(6-methyl-quinolin-2-yl)-phenyl]-amine (2k)

Fig. 58. ¹³C NMR spectrum of dimethyl-[4-(6-methyl-quinolin-2-yl)-phenyl]-amine (2k)

Fig. 60. ¹³C NMR spectrum of dimethyl-[4-(6-methyl-quinolin-2-yl)-phenyl]-amine (21)