Comparing *L*-Lactide and ε-Caprolactone Polymerization by Using Aluminum Complexes Bearing Ketiminate Ligands : Steric, Electronic, and Chelating Effects

Yu-Hsieh Chen,^{*a*} Yen-Jen Chen,^{*a*} Hsi-Ching Tseng,^{*a*} Cheng-Jie Lian,^{*a*} Hsin-Yi Tsai,^{*a*} Yi-Chun Lai,^{*a*} Sodio C. N. Hsu,^{**a*} Michael Y. Chiang,^{**a*,*b*} Hsuan-Ying Chen^{**a*}

 ^a Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C.
 ^b Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, R.O.C.

Electronic Supplementary Information Available: Polymer characterization data,

and details of the kinetic study.

Table of Contents

Table S1 Kinetic study of L-LA polymerization with various Al complexes in toluene
5 mL, [<i>L</i> -LA] = 1.0 M at 60 °C2
Table S2 ROP process of LA with a wide range of $[L^{F5}AlMe_2 + 2 BnOH]$ in toluene 5
mL, [<i>L</i> -LA] = 1.0 M at 60 °C
Figure S1 First-order kinetic plots for <i>L</i> -LA polymerizations with time in toluene (5
mL) with different concentration of $[L^{F5}AlMe_2 + 2 BnOH]$
Figure S2 . Linear plot of Mn_{GPC} vs. $[LA]_0 \times \text{conv.} / [BnOH]_0$, with polydispersity
indexes indicated by closed circles (Table 1 , entries 1 and 17-19)4
Figure S3. ¹ H NMR spectrum of PLA by using L ^{iPr2} AlMe ₂ as a catalyst (Table 1,
entry 15)4
Figure S4. GPC results of PLA by using L ^{iPr2} AlMe ₂ as a catalyst (Table 1, entry
15)5

Table S1 Kinetic study of L-LA polymerization with various Al complexes in

Time Min	L ^{iPr2}	L ^{iPr}	L ^{Me3}	L ^{H5}	L ^{F5}	L ^{CI3}	L ^{Br3}	L ^{p-F}	L ^{NO2}	Lo-F	L ^{CI}	L ^{Bn}	L ^{p-OMe}	LTHF	L ^{Py}
	PLA conversion														
5				0.07									0.09		
10		0.16			0.16		0.11	0.08					0.11		
15				0.12									0.14		
20			0.25			0.32		0.17		0.14		0.18	0.20	0.04	
25				0.24									0.23	0.09	
30		0.31			0.53	0.45	0.38		0.26		0.20		0.27		
35				0.30									0.33		
40	0.29							0.45	0.45	0.34	0.34	0.35	0.37		0.29
45						0.60								0.20	
50					0.80										
55				0.58							0.50				
60	0.38		0.41			0.77			0.67			0.55			0.38
65				0.64						0.66					
70							0.71				0.69				
75														0.39	
80	0.46	0.55			0.94			0.89	0.84						0.46
85												0.78			
90						0.91	0.83				0.81				
95										0.87			0.65		
100	0.54		0.61					0.96	0.91	0.88					0.54
110		0.68					0.88	0.97				0.89			
120	0.63													0.68	0.63
140	0.69	0.77	0.80												0.69
150							0.93								
180			0.87											0.91	
220			0.90												
260		0.92													
300	0.95														
k _{obs}	1.04	0.95	1.09	1.68	3.83	2.94	2.04	3.61	3.03	2.61	2.44	2.29	1.09	1.44	0.84
x10 ²		(2)		(17)	(19)	(16)	(11)	(24)	(9)	(18)	(13)	(20)	(2)	(14)	(4)
R ²	0.99	0.99	0.99	0.98	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.98	0.99
Ip min	18.8	0	2.3	6.3	7.6	9.7	5.7	14.7	20.8	0	0	17.9	0	26.5	2.7

toluene 5 mL, [*L*-LA] = 1.0 M at 60 °C

Ip = induction period

[Al]/[BnOH]/[LA] 0.5:1:50 1:2:50 1.5:3:50 2:4:50 Time Time Time (min) Conv. (%) Conv. (%) Conv. (%) Time (min) Conv. (%) (min) (min) 15 0.09 20 0.47 8 0.28 10 0.16 35 0.27 0.53 25 0.61 0.33 30 10 55 0.51 50 0.80 30 0.73 20 0.64 70 0.61 80 0.94 50 0.91 30 0.84 85 0.70 35 0.90 0.94 100 0.78 40

Table S2 ROP process of LA with a wide range of $[L^{F5}AlMe_2 + 2 BnOH]$ in toluene 5 mL, [L-LA] = 1.0 M at 60 °C^a

	k_{obs}								
	0.0168 (7)	0.0383 (19)	0.0588 (21)	0.0770 (37)					
	R								
¹ Ob <u>taiı</u>	0.99 ned from 'H NMR analysis.	0.99	0.990	0.99					

Figure S1 First-order kinetic plots for CL polymerizations with time in toluene (5 mL) with different concentration of [L^{F5}AlMe₂ + 2 BnOH]

Figure S2. Linear plot of Mn_{GPC} vs. [LA]₀ × conv. / [BnOH]₀, with polydispersity indexes indicated by closed circles (**Table 1**, entries 1 and 17-19)

Figure S3. ¹H NMR spectrum of PLA by using L^{iPr2}AlMe₂ as a catalyst (**Table 1**, entry 15)

Figure S4. GPC results of PLA by using L^{iPr2}AlMe₂ as a catalyst (Table 1, entry 15)