Supporting Information

Synthesis of functionalized poly(vinyl acetate) mediated by alkyne-terminated RAFT agents

Joana R. Góis,^a Anatoliy V. Popov,^b Tamaz Guliashvili,^c Arménio C. Serra,^a Jorge F. J. Coelho^{a*}

^a CEMUC, Department of Chemical Engineering, University of Coimbra, Polo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal. Fax: +351 239 798 703; Tel:+351 239 798 764; E-mail: jcoelho@eq.uc.pt

^b Department of Radiology, University of Pennsylvania, Philadelphia, PA19104, United States.

^c Home Address: 1761 Foster Street, F5B, Philadelphia PA 191116, United States. Email: tamazguliasvili@yahoo.com

Fig. S1: ¹H NMR spectrum of X1 in CDCl₃.

Fig. S2: ¹³C NMR spectrum of AT- X_1 in CD₂Cl₂.

Fig. S3: 13 C NMR spectrum of AT-X₁ in CDCl₃.

Fig. S4: FTIR-ATR spectra of the X_1 and AT- X_1 .

Fig. S5: 13 C NMR spectrum of PAT- X₁ in CDCl₃.

Fig. S6: GPC traces of poly(styrene) (PS) standard ($M_p = 10\ 050\ \text{gmol}^{-1}$; D = 1.02) and PVAc samples taken at different times of reaction. Conditions: $[VAc]_0/[1,4-\text{dioxane}]_0 = 1/1\ (\text{m/m})$; $[VAc]_0/[AT-X_1]_0/[AIBN]_0 = 100/1/0.2$, T=60 °C.

Fig. S7: UV-vis spectra of free-PVAc and PVAc synthesised through RAFT polymerization using the different RAFT agents: X_1 , AT- X_1 and PAT- X_1 respectively. Samples with 1.5 mg.mL⁻¹ concentration in CHCl₃.

Fig. S8: ¹H NMR spectrum of PVAc after the deprotection of the alkyne moiety in CDCl₃.

Fig. S9: FTIR-ATR spectra of the azido terminated-poly(ethylene glycol) (mPEG₁₁₃-N₃), alkyne terminated PVAc and the copolymer mPEG₁₁₃-*b*-PVAc after the coupling reaction.

Synthesis of azido terminated-poly(ethylene glycol) (mPEG₁₁₃-N₃)

mPEG₁₁₃-N₃ was synthesized from poly(ethylene glycol) methyl ether bromoisobutyrate (PEG₁₁₃-BiB) by a nucleophilic substitution with sodium azide (NaN₃). NaN₃ (2.04 g, 31.43 mmol) was added to a solution of mPEG₁₁₃-BiB (4.00 g, 0.79 mmol) in DMF (60 mL) and the reaction proceeded for 24h at 85 °C. The final reaction mixture was dialyzed against deionized water, and the polymer was isolated after freeze drying. ¹H NMR (400 MHz, CDCl₃) (Figure S10): δ (ppm) 4.32 (t, 2H, -O-CH₂-), 3.4 (m, 454H, (-O-CH₂-CH₂-)₁₁₃), 3.37 (s, 3H, -CH₃), 1.48 (s, 6H, -(CH₃)₂N₃).

Fig. S10: ¹H NMR spectrum of azido terminated-poly(ethylene glycol) (mPEG₁₁₃-N₃) in CDCl₃.