Structures and bonding of auropolyboroenes $[Au_2(B_4)_xB_3]^-$, $[Au_2(B_4)_xB_2]^{2-}$ and $[Au_2(B_4)_xB]^+$ (x = 2, 3): Comparison with dihydride polyboroenes

Supplementary Information

Peng Shao^{a,*}, Li-Ping Ding^a, Cheng Lu^b, Jiang-Tao Cai^a, Bo Liu^a and Chang-Bo Sun^a

Table S1. Fragmentation channels and dissociation energies (ΔE) for auropolyboroenes Au₂B₉⁺, Au₂B₁₀²⁻, Au₂B₁₁⁻, Au₂B₁₃⁺, Au₂B₁₄²⁻ and Au₂B₁₅⁻ compared with the corresponding dihydride boron H₂B₉⁺, H₂B₁₀²⁻, H₂B₁₁⁻, H₂B₁₃⁺, H₂B₁₄²⁻ and H₂B₁₅⁻.

channels	$\Delta E (\mathrm{eV})$
$Au_{2}B_{9}^{+}(C_{s}, {}^{1}A) = AuB_{9}^{+}(C_{s}, {}^{2}A) + Au(OH, {}^{2}A_{2g})$	3.53
$H_2B_9^+(C_s, {}^1A_1) = HB_9^+(C_s, {}^2A') + H(OH, {}^2A_{2g})$	4.60
$Au_{2}B_{9}^{+}(C_{s}, {}^{1}A) = B_{9}^{+}(C_{2}, {}^{1}A) + Au_{2}(D_{\infty h}, {}^{1}\Sigma_{g})$	4.39
$H_{2}B_{9}^{+}\left(C_{s}, {}^{1}A_{1}\right) = B_{9}^{+}\left(C_{2}, {}^{1}A\right) + H_{2}\left(D_{\infty h}, {}^{1}\Sigma_{g}\right)$	3.18
$Au_{2}B_{10}^{2-}(C_{2h}, {}^{1}A) = AuB_{10}^{2-}(C_{s}, {}^{2}A) + Au(OH, {}^{2}A_{2g})$	3.74
$H_{2}B_{10}^{2-}\left(C_{2h}, {}^{1}A\right) = HB_{10}^{2-}\left(C_{s}, {}^{2}A'\right) + H\left(OH, {}^{2}A_{2g}\right)$	4.56
$Au_{2}B_{10}^{2-}\left(C_{2h}, {}^{1}A\right) = B_{10}^{2-}\left(D_{2h}, {}^{1}A_{g}\right) + Au_{2}\left(D_{\infty h}, {}^{1}\Sigma_{g}\right)$	4.31

$$H_{2}B_{10}^{2-}(C_{2h}, {}^{1}A) = B_{10}^{2-}(D_{2h}, {}^{1}A_{g}) + H_{2}(D_{\infty h}, {}^{1}\Sigma_{g})$$
 3.22

^a College of Science, Shaanxi University of Science & Technology, Xi'an 710021, China

^bDepartment of Physics, Nanyang Normal University, Nanyang 473061, China

^{*}Correspondence to: Peng Shao, College of Science, Shaanxi University of Science & Technology, Xi'an 710021, China. E-mail address: scu_sp@163.com (Peng Shao).

$$Au_{2}B_{11}^{-}(C_{2v}, {}^{1}A_{1}) = AuB_{11}^{-}(C_{s}, {}^{2}A') + Au(OH, {}^{2}A_{2g}) \qquad 3.50$$

$$H_{2}B_{11}^{-}\left(C_{2\nu}, {}^{1}A_{1}\right) = HB_{11}^{-}\left(C_{s}, {}^{2}A'\right) + H\left(OH, {}^{2}A_{2g}\right)$$

$$4.65$$

$$Au_{2}B_{11}^{-}\left(C_{2\nu}, {}^{1}A_{1}\right) = B_{11}^{-}\left(C_{2\nu}, {}^{1}A_{1}\right) + Au_{2}\left(D_{\infty h}, {}^{1}\Sigma_{g}\right)$$
 3.01

$$H_{2}B_{11}^{-}\left(C_{2\nu}, {}^{1}A_{1}\right) = B_{11}^{-}\left(C_{2\nu}, {}^{1}A_{1}\right) + H_{2}\left(D_{\infty h}, {}^{1}\Sigma_{g}\right)$$
 2.64

$$Au_{2}B_{13}^{+}\left(C_{s}^{1}, A\right) = AuB_{13}^{+}\left(C_{1}^{2}, A\right) + Au\left(OH^{2}, A_{2g}\right) \qquad 3.26$$

$$H_{2}B_{13}^{+}\left(C_{2h}, {}^{1}A\right) = HB_{13}^{+}\left(C_{s}, {}^{2}A\right) + H\left(OH, {}^{2}A_{2g}\right)$$

$$4.64$$

$$Au_{2}B_{13}^{+}\left(C_{s}, {}^{1}A\right) = B_{13}^{+}\left(C_{s}, {}^{1}A'\right) + Au_{2}\left(D_{\infty h}, {}^{1}\Sigma_{g}\right)$$

$$4.46$$

$$H_{2}B_{13}^{+}\left(C_{2h}, {}^{1}A\right) = B_{13}^{+}\left(C_{s}, {}^{1}A'\right) + H_{2}\left(D_{\infty h}, {}^{1}\Sigma_{g}\right)$$
 2.87

$$Au_{2}B_{14}^{2-}(C_{2h}, {}^{1}A) = AuB_{14}^{2-}(C_{s}, {}^{2}A) + Au(OH, {}^{2}A_{2g}) \qquad 3.65$$

$$H_{2}B_{14}^{2-}\left(C_{2h}, {}^{1}A_{1}\right) = HB_{14}^{2-}\left(C_{s}, {}^{2}A\right) + H\left(OH, {}^{2}A_{2g}\right)$$

$$4.58$$

$$Au_{2}B_{14}^{2-}\left(C_{2h}, {}^{1}A\right) = B_{14}^{2-}\left(C_{2h}, {}^{1}A\right) + Au_{2}\left(D_{\infty h}, {}^{1}\Sigma_{g}\right)$$
 5.40

$$H_{2}B_{14}^{2-}\left(C_{2h}, {}^{1}A_{1}\right) = B_{14}^{2-}\left(C_{2h}, {}^{1}A\right) + H_{2}\left(D_{\infty h}, {}^{1}\Sigma_{g}\right)$$

$$4.54$$

$$Au_{2}B_{15}^{-}(C_{2v}, {}^{1}A) = AuB_{15}^{-}(C_{s}, {}^{2}A) + Au(OH, {}^{2}A_{2g}) \qquad 3.49$$

$$H_{2}B_{15}^{-}(C_{2h}, {}^{1}A_{1}) = HB_{15}^{-}(C_{s}, {}^{1}A) + H(OH, {}^{2}A_{2g})$$

$$4.65$$

$$Au_{2}B_{15}^{-}\left(C_{2\nu}, {}^{1}A\right) = B_{15}^{-}\left(C_{1}, {}^{1}A\right) + Au_{2}\left(D_{\infty h}, {}^{1}\Sigma_{g}\right)$$
 3.23

$$H_{2}B_{15}^{-}\left(C_{2h},{}^{1}A_{1}\right) = B_{15}^{-}\left(C_{1},{}^{1}A\right) + H_{2}\left(D_{\infty h},{}^{1}\Sigma_{g}\right)$$
 2.87

Fig. S1 Optimized structures of the low-lying isomers of $Au_2B_9^+$ and $Au_2B_{10}^{2-}$ auropolyboroenes with their symmetry, electron state and relative energies at B3LYP/Au/SDD/B/6-311+G* method.

Fig. S2 Optimized structures of the low-lying isomers of $Au_2B_{11}^{-}$ and $Au_2B_{13}^{+}$ auropolyboroenes with their symmetry, electron state and relative energies at B3LYP/Au/SDD/B/6-311+G* method.

Fig. S3 Optimized structures of the low-lying isomers of $Au_2B_{14}^{2-}$ and $Au_2B_{15}^{-}$ auropolyboroenes with their symmetry, electron state and relative energies at B3LYP/Au/SDD/B/6-311+G* method.

Fig. S4 Optimized lowest-energy structures for dihydride polyboroenes $[H_2(B_4)_x B_3]^-$, $[H_2(B_4)_x B_2]^{2-}$, $[H_2(B_4)_x B_3]^+$ (*x* = 2, 3).

Fig. S5 Optimized the ground state structures of neutral Au_2B_9 and Au_2B_{13} clusters.

Fig. S6 Chemical bonding analyses for $H_2B_{11}^{-1}$ and $H_2B_{14}^{2-1}$ using the AdNDP method.

 $4 \times 5c$ -2e B-B-B-B bonds

Fig. S7 Simulated photoelectron spectra for the lowest-energy structures of $H_2B_{11}^{-}$, $Au_2B_{11}^{-}$ and $Au_2B_{15}^{-}$ clusters at the TPSS level. Photoelectron spectra of $D_2B_{11}^{-}$ measured at 266 nm. (The spectra are taken from Ref. 28. Copyright 2012 American Chemical Society).

