Supporting Information

Nitrogen doped carbon nanotubes for sensitive and selective determination of heavy metals

Anju Joshi and Tharamani C. Nagaiah*

Physical Characterization

The morphology of the synthesized material (N-CNT 200, N-CNT 400, N-CNT 600 & O-CNT) was characterized using scanning electron microscope (SEM, JEOL, JSM-66101 V) which suggests tubular appearance of the synthesized N-CNT.

Fig. S1 : Scanning electron microscope images of synthesized a) N-CNT 200 b) N-CNT 400 c) N-CNT 600 d) N-CNT 800.

Fig. S2: Effect of concentration of the N-CNT 600 on the oxidation current in a solution containing 5 μ M Pb(NO₃)₂ in 0.05 M sulphuric acid (pH 4.0) at a frequency of 15 Hz, step potential 0.3 mV, pulse amplitude 25 mV, scan rate 4.5 mVs⁻¹, CE: Pt wire, RE: Ag/AgCl/3M KCl

Fabrication of Bi modified glassy carbon electrode (Bi/GCE)

Bismuth modified GCE was fabricated using a previously reported literature.¹ Briefly, the solution were prepared by mixing tartaric acid (D+) and HNO₃ to make sufficiently acidic solution with subsequent addition of KNO₃ and glycerol (10 %) for proper dissolving of bismuth nitrate. Bismuth nanoparticles were deposited onto GCE using triple pulse voltage technique² employing Autolab potentiostat/galvanostat in a three electrode assembly. All potentials were referenced using Ag/AgCl/3M KCl. Deposition of metal particles was accomplished by step-edge oxidation at 0.18 V for 5 s. After that, the nucleation density at the step edges was increased by applying a very short (5 ms) nucleation pulse to initiate the nanoparticle growth. Thirdly, after this nucleation pulse is applied, subsequent growth is carried out at a potential of -0.075 V for 50 sec.

Fig. S3: Square wave voltammograms at N-CNT 600 modified GCE in 0.05 M H_2SO_4 (pH 4.0) at various concentration of Cu metal ions ranging from 0.001 μ M – 1 mM at a frequency of 15 Hz, step potential 0.3 mV, pulse amplitude 25 mV, scan rate 4.5 mVs⁻¹, CE: Pt wire, RE: Ag/AgCl/3M KCl .

Table S1: Surface compo	osition of O-CNTs	and N-CNTs derived	from C H N analysis.
--------------------------------	-------------------	--------------------	----------------------

Sample	C (%)	H(%)	N(%)
O-CNT	80.6	19.4	0
N-CNT 200	88.8	2.4	8.8
N-CNT 400	89.9	1.9	8.2
N-CNT 600	91.7	1.5	6.8
N-CNT 800	94.6	0.9	4.5

Table S2: Analytical parameters for simultaneous determination of Pb metal ions in presence of Cd metal ions using various CNTs

Sample	Regression Equation	Linear Range (µM)	R ²	Sensitivity (μΑ μM ⁻¹ cm ⁻²)
N-CNT 200	1.70x+112.63	0.01-70	0.98	24.062
N-CNT 400	5.57x+46.95	0.01-70	0.98	78.83
N-CNT 600	8.35x+67.60	0.01-70	0.98	118.18
O-CNT	3.34x+480.12	0.01-70	0.97	47.27

Table S3: Analytical parameters for simultaneous determination of Cd metal ions in presence of Pb metal ions using various CNTs

Sample	Regression Equation	Linear Range (µM)	R ²	Sensitivity (μΑ μΜ ⁻¹ cm ⁻²)
N-CNT 200	1.85x+23.47	0.1-100	0.97	26.18
N-CNT 400	2.28x+42.08	0.1-100	0.98	32.27
N-CNT 600	2.61x+71.48	0.1-100	0.99	37.15
O-CNT	1.76x+39.70	0.1-100	0.99	24.91

Sample	C %	0 %	N %				
			N _{total}	N1	N2	N3	N4
OCNT	80.6	19.4	0				
N-CNT 200	84.5	9.5	6.0	1.7	4.3		
N-CNT 400	89.5	4.8	5.7	3.5	1.8	0.4	
N-CNT 600	93.3	2.4	4.3	2.2	1.4	0.5	0.2
N-CNT 800	95.5	1.6	2.9	1.2	0.8	0.7	0.2

Table S4: Surface composition of O-CNTs and N-CNTs derived from XPS experiments.³⁻⁴

Table S5: Analytical results of N-CNT 600 modified GCE towards determination of Pb and Cd metal ions from natural water resources (n=5)

Sample	Analyte	Concentration (Added) µM	Concentration (found) μΜ	Recovery (%)

Tap water	Cd	5	4.8	96
(III Kopar)	Pb	2	2.1	105

- 1. Groundwakerare feani, H. Thejaswini and S. Sampath, Bulletin of Material Science, 2008, 31, r 207-212.
- ^r 207-212.
 2. E. C. Walter, M. P. Zach, F. Favier, B. J. Murray, K. Inazu, J. C. Hemminger and R. M.
 Penner, *ChemPhysChem*, 2003, 4, 131-138.
- 3. T. C. Nagaiah, S. Kundu, M. Bron, M. Muhler and W. Schuhmann, *Electrochemistry Communications*, 2010, **12**, 338-341.
- 4. S. Kundu, W. Xia, W. Busser, M. Becker, D. A. Schmidt, M. Havenith and M. Muhler, *Physical Chemistry Chemical Physics*, 2010, **12**, 4351-4359.

References: