Supporting Information

We conducted the hydrogenation of Ni-doped TiO_2 samples using the homemade low-pressure hydrogenation system as shown in the Figure below.

In the hydrogenation reaction, Ni doped TiO₂ samples were placed in a quartz boat. After evacuation, the system was purged with low-pressure H_2 for about five minutes; the H_2 pressure was then slowly increased to 800 Torr. The temperature of the oven was maintained at 300 $^{\circ}$ C for 3 hrs.

Table S1: Hydrogen production rates (mmol/g-Hr) of Ni-doped TiO_2 and hydrogenated Ni-doped TiO_2 with 0.5% and 5% Ni-doping NPs under 1-hr illumination using 10% ethanol as sacrificial agent and 2 W Xe-lamp output.

manimutor asing 1070 common as successful agoin and 2 (1 110 minh output				
Sample	0.5% Ni	5% Ni	H-0.5% Ni	H-5% Ni
	Doped TiO ₂	Doped TiO₂	Doped TiO₂	Doped TiO ₂
H ₂ Production	0.17	0.40	0.25	1.64
(mmol/g-Hr)				

Table S2: Comparison of predicted energies for the dissociative adsorption of H_2 and migration of H on 1- and 2-Ni doped TiO₂ and on undoped TiO₂ surfaces at the DFT+U level of theory.

System	(1-2) Ni-TiO ₂	Undoped TiO ₂ ⁹	
H ₂ (g)+1Ni-TiO ₂	0.0		
H ₂ 1Ni-TiO ₂ (a)	0.9		
TS1	12.1		
H-O _{3C} , H-Ni-1Ni-TiO ₂ (a)	-16.6		
TS2	-13.2		
$H-O_{3C},H-O_{2C}-1Ni-TiO_{2}(a)$	-94.9		
H ₂ (g)+1Ni-TiO ₂	0.0	0.0	
$H_2O_{2C}-1Ni-TiO_2(a)$	1.21	-0.3	
TS3	6.1	47.8	
$2\text{H-O}_{2\text{C}}$ -1Ni-TiO ₂ (a)	-98.2	-18.3	
H ₂ (g)+2Ni-TiO ₂	0.0		
H_22Ni -Ti $O_2(a)$	0.8		
TS4	17.4		
H-O _{3C,} H-Ni-2Ni-TiO ₂ (a)	-15.6		
TS5	-14.6		
$\text{H-O}_{3C}, \text{H-O}_{2C}-2\text{Ni-TiO}_2(a)$	-92.5		
$H_2(g)+2Ni-TiO_2$	0.0	0.0	
$H_2O_{2C}-2Ni-TiO_2$ (a)	0.2	-0.3	
TS6	12.4	47.8	
2H-O _{2C} -2Ni (a)	-94.8	-18.3	
TS6a	-72.6	2.5	

H-O _{3C} ,H-O _{2c} -2Ni (a)	-79.7	-8.7
TS6b	-64.8	9.9
H-O _{sub2} ,H-O _{2c} -2Ni (a)	-81.0	-9.5
2H-O _{sub2} -2Ni (b)	-76.3	7.3
TS6c	-50.7	29.3
$H_2O-2Ni(b)$	-68.7	19.0

Table S3: Comparison of predicted energies for H-atom adsorption and migration on 1- and 2-Ni doped TiO_2 and those on the un-doped TiO_2 surface as well as those for 2H atoms on O_{2c} sites and migration into the bulk at the DFT+U level of theory

System	1Ni-TiO ₂	Undoped TiO ₂ ⁹			
H-O _{2C} -1Ni-TiO ₂ (a)	0	0			
TS7	23.5	27.8			
$H-O_{3C}-1Ni-TiO_2$ (a)	18	17.6			
TS8	32.9	35.6			
H_{BD1} -1Ni-Ti O_2 (a)	14.3	13.7			
TS9	30.3				
H_{BD2} -1Ni-Ti O_2 (a)	21				
System	2Ni-TiO ₂	Undoped TiO ₂ ⁹	System	2Ni-TiO ₂	Undoped TiO2 ⁹
H-O _{2C} -2Ni-TiO ₂ (a)	0.0	0.0	2H-O _{2c} -2Ni(a)	0.0	0.0
TS10	22.7	27.8	TS6a	22.2	20.8
$H-O_{3C}-2Ni-TiO_2$ (a)	18.2	17.6	$H-O_{3c}, H-O_{2c}-2Ni(a)$	15.1	9.6
TS11	33	35.6	TS6b	30.0	28.2
H_{BD1} -2Ni-Ti O_2 (a)	15	14.33	H-O _{BD1} ,H-O _{2c} -2Ni(a)	13.8	14.2
TS12	29.6		TS6b1	16.4	20.0
H_{BD2} -2Ni-Ti O_2 (a)	19.9		H-O _{sub2} ,H-O _{2c} -2Ni(a)	4.8	8.8
			2H-O _{sub2} -2Ni(b)	18.5	25.6
			TS6c	44.1	47.6

H ₂ O-2Ni(b) 26.1 37.3

Figure S1. The picture of Ni doped TiO_2 powders and the UV-Vis absorption spectra of the powders.

Figure S2. Perspective view of the $TiO_2(101)$ surface slab model used in the present study.

Figure S3. Calculated potential energy diagrams for (a) H_2 dissociation on 1Ni doped TiO₂ surface (on Ni site), (b) H_2 dissociation on the Ni-doped TiO₂ surface (at O_{2C} site), (c) H_2 dissociation on the 2Ni-doped TiO₂ surface (at Ni site) (d) H_2 dissociation on the 2Ni-doped TiO₂ surface (at O_{2C} site), (e) H migration on the 1Ni- doped TiO₂ from the O_{2C} site to bulk, (f) H migration on the 2Ni-doped TiO₂ from the O_{2C} site to bulk. The results of H_2 dissociation and migration on undoped TiO₂(101) shown in red color are taken from Raghunath et al.⁹

Figure S4. Optimized configurations of TiO₂, H and H₂ on (1 to 2) Ni-TiO₂ (101). (Grey: Titanium; Red: Oxygen; Royal Blue: Nickel; Blue: Hydrogen). The distance (Å) between the surface and H are shown in the optimized structure.

TS6

Figure S5. Optimized transition state configurations for H_2 dissociation and migration on (1 - 2) Ni-TiO₂. (Grey: Titanium; Red: Oxygen; Royal Blue: Nickel; Blue: Hydrogen). The distance (Å) between the surface and H are shown in the optimized structure.

Figure S6. Optimized configurations of species from H_2 dissociation and migration from surface into to subsurface layers of the un-doped TiO₂ anatase presented in Figure 3a.

Figure S7. Optimized configurations of H-species on (1 - 2) Ni-TiO₂ surfaces and in their bulks (Grey: Titanium; Red: Oxygen; Royal Blue: Nickel; Blue: Hydrogen). The distance (Å) between the surface and H are shown in the Figure.

Figure S8. Densities of states (DOS) for the H atom bonding with O at the surface O_{2c} site of 2Ni-TiO₂ (H-O_{2c}-2Ni-TiO₂(a)) and the H atom bonding with O in the bulk O_{sub3} site of 2Ni-TiO₂ (H-O_{sub3}-2Ni-TiO₂(b)) calculated at the DFT + U level (U = 4.0 eV for Ni and Ti) (for clarity, H and Ni PDOS peaks are magnified). Their optimized geometries and Bader charges are shown in Fig S7 and S9, respectively.

b) 2Ni-TiO₂

c) H₂...O_{2c}-2Ni

d) H₂...2Ni-TiO₂

e) 2H-O_{2c}-2Ni(a)

f) H-O_{sub2}, H-O_{2C}-2Ni(a)

g) 2HO-2Ni(b)

h) 2H-O_{sub2}-2Ni(b)

i) H₂O-2Ni(b)

j) H-O_{2C}-2Ni(a)

k) H-O_{sub3}-2Ni(b)

Figure S9. Bader atomic charges (*e*) for H, H_{2} , and $H_{2}O$ adsorbed on the surface and/or subsurface layers of 2Ni-doped TiO₂ along with those of the clean TiO₂.