## Synthesis of silicone elastomers containing trifluoropropyl groups and their

## use in dielectric elastomer transducers

Mihaela Dascalu,<sup>a†</sup> Simon J. Dünki,<sup>a,b</sup> Jose-Enrico Q. Quinsaat,<sup>a,b</sup> Yee Song Ko,<sup>a,b</sup> Dorina M. Opris<sup>a\*</sup>

<sup>a.</sup> Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Functional Polymers, Ueberlandstr. 129, CH-8600, Dübendorf, Switzerland, E-mail: dorina.opris@empa.ch.

<sup>b.</sup> Ecole Polytechnique Fédérale de Lausanne (EPFL), Institut des matériaux, Station 12, CH 1015, Lausanne, Switzerland.

+ Present address: Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, Iasi, 700487, Romania



## Fig. S1 <sup>1</sup>H NMR spectrum of P<sub>28</sub> in CDCl<sub>3</sub> at room temperature.



Fig. S2 <sup>1</sup>H NMR spectrum of P<sub>42</sub> in CDCl<sub>3</sub> at room temperature.



Fig. S3 <sup>1</sup>H NMR spectrum of  $P_{47}$  in CDCl<sub>3</sub> at room temperature.



Fig. S4 <sup>1</sup>H NMR spectrum of  $P_{53}$  in CDCl<sub>3</sub> at room temperature.



Fig. S5 <sup>1</sup>H NMR spectrum of  $P_{58}$  in CDCl<sub>3</sub> at room temperature.



Fig. S6 GPC of P<sub>28</sub> in THF.



|      | 0.010101 | 9/11/01 |
|------|----------|---------|
| Mw : | 1.4017e5 | g/mol   |
| Mz : | 3.1178e5 | g/mol   |
| Mv:  | 0.000000 | g/mol   |
| D:   | 2 3681e0 |         |

Fig. S7 GPC of P<sub>42</sub> in THF.



| Mn : | 1.1599e4 | g/mol |
|------|----------|-------|
| Mw:  | 1.8191e4 | g/mol |
| Mz : | 2.5863e4 | g/mol |
| Mv:  | 0.000000 | g/mol |
| D :  | 1.5683e0 |       |

Fig. S8 GPC of P<sub>47</sub> in THF.



| Mn : | 3.4709e4 | g/mol |
|------|----------|-------|
| Mw : | 7.5884e4 | g/mol |
| Mz:  | 1.4513e5 | g/mol |
| Mv:  | 0.000000 | g/mol |
| D :  | 2.1863e0 | -     |

Fig. S9 GPC of P<sub>53</sub> in THF.



Fig. S10 GPC of P<sub>58</sub> in THF.



Fig. S11 FTIR spectra of  $P_x$ .







Fig. S13 DSC curves of P<sub>42</sub>.







Fig. S15 DSC curves of P<sub>53</sub>.



|                                                                  |    |                                              | 20.00.2014 00.20.40 |
|------------------------------------------------------------------|----|----------------------------------------------|---------------------|
| 1) Heat from -140.00°C to 0.00°C at 20.00°C/min                  | 3) | Hold for 3.0 min at -140.00°C                |                     |
| <ol> <li>Cool from 0.00°C to -140.00°C at 20.00°C/min</li> </ol> | 4) | Heat from -140.00°C to 0.00°C at 20.00°C/min |                     |
|                                                                  |    |                                              |                     |





Fig. S17 Stress-strain curves of material P<sub>28</sub>(0). The red curve represents the average.



Fig. S18 Stress-strain curves of material P<sub>28</sub>(5). The red curve represents the average.



Fig. S19 Stress-strain curves of material P<sub>28</sub>(10). The red curve represents the average.



Fig. S20 Stress-strain curves of material  $P_{42}(0)$ . The red curve represents the average.



Fig. S21 Stress-strain curves of material  $P_{42}(5)$ . The red curve represents the average.



Fig. S22 Stress-strain curves of material  $P_{47}(0)$ . The red curve represents the average.



Fig. S23 Stress-strain curves of material  $P_{47}(5)$ . The red curve represents the average.



Fig. S24 Stress-strain curves of material  $P_{47}(10)$ . The red curve represents the average.



Fig. S25 Stress-strain curves of material  $P_{53}(0)$ . The red curve represents the average.



Fig. S26 Stress-strain curves of material  $P_{53}(5)$ . The red curve represents the average.



Fig. S27 Stress-strain curves of material  $P_{58}(0)$ . The red curve represents the average.



Fig. S28 Stress-strain curves of material  $P_{58}(5)$ . The red curve represents the average.



**Fig. 29** Dependence of the real (G') and imaginary (G'') parts of the shear modulus and the tan(d) at room temperature for selected materials. The samples used had a thickness of 263  $\mu$ m - **P**<sub>58</sub>(5), 180  $\mu$ m - **P**<sub>53</sub>(5), 187  $\mu$ m - **P**<sub>42</sub>(5), **P**<sub>28</sub>(0) - 250  $\mu$ m and were measured one year after their synthesis.



Fig. S30 Cyclic actuation tests of  $P_{42}(0)$  at 4.3 V/µm (10 cycles at 0.33 Hz).



Fig. S31 Cyclic actuation strain of  $P_{42}(5)$  at 7.1 V/µm (10 cycles at 0.25 Hz).



Fig. S32 Cyclic actuation strain of  $P_{42}(5)$  at 7.1 V/µm (100 cycles at 0.25 Hz).



Fig. S33 An actuator constructed from  $P_{42}(5)$  which suffered a shortcut and can self-repair after few cycles at 5.5 V/µm and 0.25 Hz.



Fig. S34 Cyclic actuation strain of  $P_{47}(0)$  at 17.6 V/µm (100 cycles at 0.4 Hz).



Fig. S35 Cyclic actuation strain of  $P_{53}(0)$  at 5.6 V/µm (100 cycles at 0.33 Hz).



Fig. S36 Self-healing of an actuator constructed from  $P_{53}(5)$  6.7 V/µm at 0.25 Hz.



Fig. S37 Long-term stability of  $P_{58}(5)$  at 10.2 V/µm for 100 cycles at 0.25 Hz.