Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Design of ultra-sensitive gold nanorods colorimetric sensor and its application based on formaldehyde reducing Ag⁺

Jin-Mei Lin^a, Yi-Qun Huang^{a, b}, Zhen-bo Liu^c, Chang-Qing Lin^d, Xudong Ma^b, Jia-Ming Liu^{a,*}

^a College of Chemistry and Environmental, Minnan Normal University,

Zhangzhou, 363000, P.R. China

^b Zhangzhou Affiliated Hospital of Fujian Medical University,

Zhangzhou, 363000, P.R. China

^c The third Hospital of Xiamen, Xiamen, 361000, PR China

^d Department of Food and Biological Engineering, Zhangzhou Institute of Technology,

Zhangzhou, 363000, P.R. China

^{*} Corresponding author: Tel.:+86 596 2591352.

E-mail address: zzsyliujiaming@163.com (J. Liu).

Supporting Results

Figure S1 Effect of pH on the $\Delta\lambda_{LPAB}$ of the system containing 1.00 mL AuNRs, 85.0 µL of 0.010 M AgNO₃, 1.00 mL glycine-sodium hydroxide buffe and 8.0 ng mL⁻¹ HCHO at 50 °C for 15 min.

Figure S2. Effects of the dosage of AuNRs (A: 85.0 μ L 0.01 M of AgNO₃) and AgNO₃ (B: 1.00 mL AuNRs) on the $\Delta\lambda_{LPAB}$ of the system containing 1.00 mL AuNRs, 85.0 μ L of 0.010 M AgNO₃, 1.00 mL glycine-sodium hydroxide buffe and 8.0 ng mL⁻¹ HCHO at 50 °C for 15 min

Figure S3 Effects of reaction temperature (A, reaction time: 15 min) and time (B, reaction temperature: 50 °C) on the $\Delta\lambda_{LPAB}$ of the system (1.00 mL AuNRs, 85.0 µL of 0.010 M AgNO₃, 1.00 mL glycine - sodium hydroxide buffe and 8.0 ng mL⁻¹ HCHO. pH = 9.58).

Figure S4. Effects of standing time on the $\Delta\lambda_{LPAB}$ of the system (1.00 mL AuNRs, 85.0 µL of 0.010 M AgNO₃, 1.00 mL glycine-sodium hydroxide buffe and 8.0 ng mL ⁻¹ HCHO at 50 °C for 15 min. pH = 9.58)

Figure S5 The working curve of this AuNRs colorimetric sensor (When the contents of HCHO were 0, 0.20, 4.00, 8.00 and 14.00 (ng mL⁻¹), the $\Delta\lambda_{LPAB}$ (nm) were 34, 40,49 and 65, the corresponding RSD (%, *n* = 6) were 4.2, 3.8, 3.4 and 3.1, respectively).

Table S1 Effects of the co-existing substances
--

AuNRs colorimetric sensor			References	AuNRs colorimetric sensor			References
	Solorimetrie sen	501	[1]			5011501	[1]
Co-existing substances	Allowed multiples	Er(%)	Allowed multiples	Co-existing substances	Allowed multiples	Er(%)	Allowed multiples
K^+	1200	1.5	1000	$\mathrm{NH_4^+}$	500	2.4	200
Na ⁺	1200	-3.2	1000	Mn^{2+}	300	1.7	100
SO_4^{2-}	1200	-2.6	1000	Fe ³⁺	100	- 2.8	10
NO_3^-	1000	4.1	500	Cu^{2+}	100	3.3	1
Zn^{2+}	1000	1.9	500	I-	100	4.2	1
Mg^{2+}	1000	3.7	500	Fe ³⁺	200	2.4	50
F^-	1000	-2.8	500	Co ²⁺	500	3.6	200
Ca^{2+}	800	4.5	400	Citric acid	1500	-4.7	1000
Ni ²⁺	800	-1.8	400	Acetone	600	2.9	100
Pb^{2+}	800	2.1	400	Phenol	600	3.1	100
Cd^{2+}	800	3.0	400	Methanol	600	-2.5	100
Cl-	800	- 4.0	400	Acetaldehyde	200	3.4	50
Al^{3+}	500	3.9	200	Oxalic acid	200	4.0	50

Reference:[1] G. H. Tan, G. R. Li, J. Zhou, Chin. J. Spectrosc, Lab, 2010, 27, 1436-1439.