Supporting Information for

Design and synthesis of periodic mesoporous organosilica materials with a multi-compartment structure

C. X. (Cynthia) Lin, ¹ S.Jambhrunkar, ¹ P. Yuan, ² C. H. Zhou, ³ and X. S. Zhao^{4*}

¹ Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia

²State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China

³College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China

⁴ School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia

*george.zhao@uq.edu.au

Figure S1. TEM images of MCPMO samples with co-solvents methanol (A. 3M - B. 6M - C. 20M), propanol (E. 3P - F. 6P - G. 20P), and acetone (I. 3A - J. 6A - K. 20A)

Figure S2. Low magnification TEM image of multi-compartment periodic mesoporous organosilica material

Figure S3. SEM images of MCPMO samples with co-solvents methanol (A. 3M - B. 6M - C. 20M), propanol (E. 3P - F. 6P - G. 20P, and acetone (I. 3A - J. 6A - K. 20A)

Figure S4. XRD patterns of MCPMO samples with different concentrations (3%, 6%, and 20%) of added co-solvents A) Methanol, B) Propanol, and C) Acetone.

Figure S5. Nitrogen sorption isotherm of MCPMO samples with different concentrations (3%, 6%, and 20%) of added co-solvents A) Methanol, B) Propanol, and C) Acetone.

Figure S6. Pore size distribution of MCPMO samples with different concentrations (3%, 6%, and 20%) of added co-solvents A) Methanol, B) Propanol, and C) Acetone.

Figure S7. Pore size distribution of MCPMO samples (0E, 1E, 2E, 3E, 6E, 8E, 12E, 20E, and 40E)

Table S1. Physicochemical properties of MCPMO samples with varied concentrations of methanol, propanol, and acetone at (3%, 6%, and 20%)

Sample	BET surface	Pore volume	Pore size	Particle size	Vesicle size
	area (m²/g)	(cm³/g)	(nm)	(nm) ^{SEM}	(nm) ^{TEM}
3M	734.6	0.72	3.30	350 - 400	225x 225
6 M	642.9	0.76	3.26	300 - 400	30 x 125
20 M	995.3	0.86	3.40	500 – 750	n/a
3 P	842.3	0.89	3.27	350 - 450	45 x 200
6 P	573.6	0.54	3.12	300 - 800	40 x 230
20 P	693.9	0.66	3.54	600 - > 1000	n/a
3 A	706.6	0.68	3.25	400 - 450	50 x 200
6 A	640.6	0.62	3.14	200 - 500	30-60 x 220
20 A	932.2	0.82	3.25	400 - 750	n/a

Sample	OE	3 E	6 E
TEM			CONT.
Pore size (nm)	3.24	3.25	3.15
After loading	2.56	2.43	2.48
Pore vol (cm ³ /g)	0.82	0.78	0.70
After loading	0.49	0.36	0.37
Surf Area (m ² /g)	698.3	699.5	743.7
After loading	542.4	309.8	415.6
% drug loading	35.14	47.01	43.3

Table S2. Physical properties and drug loading amount of selected MCPMO samples