Electronic Supplementary Information

Synthesis of g-C₃N₄ Nanosheets/Au@Ag Nanoparticles

Hybrids as SERS Probe for Cancer Cells Diagnostics

Jianping Wang,^{a,b} Renyong Liu,^a Cheng Zhang,^{a,b} Guangmei Han,^a Jun Zhao,^a Bianhua Liu,^{*,a} Changlong Jiang^{*,a} and Zhongping Zhang^{a,c}

^a Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui, 230031, China. E-mail: <u>cljiang@iim.ac.cn, bhliu@iim.ac.cn</u>.

^b Department of Chemistry, University of Science & Technology of China, Hefei, Anhui, 230026, China.

^c State Key Laboratory of Transducer Technology Chinese Academy of Sciences, Hefei, Anhui, 230031, China.

Corresponding Author: Changlong Jiang and Bianhua Liu *E-mail: cljiang@iim.ac.cn; bhliu@iim.ac.cn. Tel.: +86-551-65591156

Figure S1. (a) SEM image of the Au@AgNPs. The inset was the photograph of the synthesized Au@AgNPs. (b) TEM image of the Au@AgNPs. The illustration was the TEM image of Au@AgNPs with larger magnification.

Zeta-potential (mv)

C ₃ N ₄	Au@Ag
-35.8	-42.6

Table S1. The Zeta-Potential of the ultrathin g-C₃N₄ nanosheets and Au@AgNPs.

Figure S2. SEM image of the bulk $g-C_3N_4$.

Figure S3. TEM image of the ultrathin $g-C_3N_4$ nanosheet. The inset was the photograph of the suspension of ultrathin $g-C_3N_4$ nanosheets.

Figure S4. The IR spectrum of bulk $g-C_3N_4(a)$ and ultrathin $g-C_3N_4$ nanosheet (b).

Figure S5. Raman spectra of the bulk $g-C_3N_4(a)$ and ultrathin $g-C_3N_4$ nanosheet (b).

Figure S6. The size distribution of the obtained ultrathin g-C₃N₄ nanosheets.

Figure S7. (a) High-magnification TEM image of $g-C_3N_4/Au@Ag$ NPs nanohybrids, (b) the corresponding HRTEM image of one single Au@Ag NP.

Figure S8. TEM image and the corresponding EDS elemental distribution of Au, Ag, N in the $g-C_3N_4/Au@Ag$ NPs nanohybrids.

Figure S9. XRD patterns of (a) bulk $g-C_3N_4$, (b) ultrathin $g-C_3N_4$ nanosheets, (c) Au@Ag NPs and (d) $g-C_3N_4/Au@Ag$ NPs nanohybrids.

Figure S10. The SERS intensity of 1×10^{-13} M R6G molecules at 1360 cm⁻¹ from g-C₃N₄/Au@AgNPs hybrids with various concentrations Au@AgNPs: 0.05 nM, 0.10 nM, 0.20 nM and 0.40 nM.

Figure S11. Raman intensity of R6G at 1360 cm⁻¹ with different concentrations from 1×10^{-17} M to 1×10^{-9} M obtained from g-C₃N₄/Au@AgNPs hybrids.

Figure S12. (a) SERS spectra of 1.0×10^{-13} M R6G molecules from 10 random sites, (b) the corresponding SERS intensity of R6G (at 1360 cm⁻¹) obtained from the above sites.

Figure S13. SERS spectra of FA with the same concentration (100 nM) obtained from g- $C_3N_4/Au@AgNPs$ and Au@AgNPs, respectively.

Figure S14. (a) TEM image of ultrathin g-C₃N₄ nanosheets/AgNPs (g-C₃N₄/AgNPs) composite structure. The inset was the photograph of above mentioned nanocomposite. (b) SERS spectra of R6G molecules with different concentrations (from 1×10^{-10} M to 1×10^{-14} M) obtained from g-C₃N₄/AgNPs (c) SERS spectra of FA with different concentrations: 0 nM, 25 nM, 50 nM, 75 nM, 100 nM. (d) SERS spectra of FA with the same concentration (100 nM) obtained from g-C₃N₄/Au@AgNPs (a) and g-C₃N₄/AgNPs (b).

Figure S15. UV-vis spectra of FA, Au@AgNPs and g-C₃N₄/Au@AgNPs-FA.

Figure S16. Viability of HeLa cells after 24 h of incubation with different concentrations of g-C₃N₄/Au@AgNPs-FA.