Supporting Information

The Effect of hemiketals on the Proton Relaxation of

Endohedral Gadofullerenols

TABLE OF CONTENTS

Figure S1. Linear relationship between T_1 relaxation rates $(1/T_1)$ and Gd³⁺ concentrations for Gd@C₈₂(OH)_{~20}O_{~2} at 7 T and 300 K.

Figure S2. Linear relationship between T_1 relaxation rates $(1/T_1)$ and Gd^{3+} concentrations for $Gd@C_{82}(OH)_{\sim 21}O_{\sim 7}$ at 7 T and 300 K.

Figure S3. C1s fitting XPS spectra of Gd@C₈₂(OH)_{~15}O_{~6}.

Figure S4. C1s fitting XPS spectra of Gd@C₈₂(OH)_{~18}O_{~8}.

Figure S5. Linear relationship between T_1 relaxation rates $(1/T_1)$ and Gd³⁺ concentrations for Gd@C₈₂(OH)_{~15}O_{~6} in water at 0.5 T and 300 K.

Figure S6. Linear relationship between T_1 relaxation rates $(1/T_1)$ and Gd³⁺ concentrations for Gd@C₈₂(OH)_{~18}O_{~8} in water at 0.5 T and 300 K.

Figure S7. Size distributions for $Gd@C_{82}(OH)_{\sim 15}O_{\sim 6}(1\#)$ and $Gd@C_{82}(OH)_{\sim 18}O_{\sim 8}(2\#)$.

Figure S8. Zeta potential distribution for Gd@C₈₂(OH)_{~20}O_{~2}. Figure S9. Zeta potential distribution for Gd@C₈₂(OH)_{~21}O_{~7}.

Figure S1. Linear relationship between T_1 relaxation rates $(1/T_1)$ and Gd^{3+} concentrations for $Gd@C_{82}(OH)_{\sim 20}O_{\sim 2}$ at 7 T and 300 K.

Figure S2. Linear relationship between T_1 relaxation rates $(1/T_1)$ and Gd^{3+} concentrations for $Gd@C_{82}(OH)_{\sim 21}O_{\sim 7}$ at 7 T and 300 K.

Figure S3. C1s fitting XPS spectra of Gd@C₈₂(OH)_{~15}O_{~6}.

Figure S4. C1s fitting XPS spectra of Gd@C₈₂(OH)_{~18}O_{~8}.

Figure S5. Linear relationship between T_1 relaxation rates $(1/T_1)$ and Gd³⁺

concentrations for Gd@C₈₂(OH) $_{15}O_{-6}$ in water at 0.5 T and 300 K.

Figure S6. Linear relationship between T_1 relaxation rates $(1/T_1)$ and Gd^{3+} concentrations for $Gd@C_{82}(OH)_{\sim 18}O_{\sim 8}$ in water at 0.5 T and 300 K.

Figure S7. Size distributions for Gd@C₈₂(OH)_{~15}O_{~6} (1#) and Gd@C₈₂(OH)_{~18}O_{~8} (2#).

Figure S9. Zeta potential distribution for $Gd@C_{82}(OH)_{\sim 21}O_{\sim 7}$.