Supplementary Information for

Fully screen printed highly conductive electrodes on various flexible substrates for asymmetric supercapacitors

Siliang Wang,^a Nishuang Liu,^{*a} Congxing Yang,^a Weijie Liu,^a Jun Su,^a Luying Li,^a Changping Yang^b and Yihua Gao^{*ab}

Center for Nanoscale Characterization & Devices (CNCD), Wuhan National Laboratory for Optoelectronics (WNLO) & School of Physics, Huazhong University of Science and Technology (HUST), LuoyuRoad 1037, Wuhan 430074, China.
 E-mail:gaoyihua@hust.edu.cn; nishuang_liu@foxmail.com

^bHubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, 368 Youyi Avenue, Wuhan 430062, China 1. The volumetric capacitance of the device can be calculated from CV results by the following equations:

$$C = A / (2 \times s \times \Delta U) \tag{1}$$

$$C_{V} = C/V = A/(2 \times s \times V \times \Delta U)$$
⁽²⁾

where *C* is the capacitance of the ASC, *A* is the area of CV curve, *s* is the scan rate, ΔU is the potential window, C_V is the volumetric capacitance, and *V* is the total volume of the electrodes except collector.

2. The volumetric capacitance of the device can be calculated from galvanostatic charge-discharge results by the following equations:

$$C = I \times \Delta t \,/\, \Delta U \tag{3}$$

$$C_{V} = C / V = I \times \Delta t / (V \times \Delta U)$$
⁽⁴⁾

where *C* is the capacitance of the ASC, *I* is the discharge current, Δt is the discharge time, ΔU is the potential window during the discharge process, C_V is the volumetric capacitance, and *V* is the total volume of the electrodes except collector.

3. The energy density and average power density derived from the GCD of the device can be calculated from the following equations:

$$D_E = 0.5C_V (\Delta U)^2 \tag{5}$$

$$D_P = 3600 D_E / \Delta t \tag{6}$$

where D_E is the energy density, C_V is the volumetric capacitance which can be obtained through Eq. 4, ΔU is the potential window, D_P is the volumetric power density and Δt is the discharge time.

4. The capacity retention (*CR*) can be calculated from galvanostatic charge-discharge results by the following equations:

$$CR = \Delta t \,/\, \Delta t_0 \tag{7}$$

Where Δt is the discharge time of different cycles, Δt_0 is initial discharge time.

Fig. S1 Compressing process of carbon nanoparticle electrode. (a) Initial state. (b) Compressing for curvature of 20%. (c) Compressing for curvature of 40%.

Fig. S2 (a) The SEM image of entangled MnO_2 nanowires. (b) The enlarger SEM image of the border of carbon nanoparticle and MWCNTs-MnO₂. SEM images of surface of (c) MWCNTs electrode and (d) MnO_2 electrode.

Fig. S3 Cyclic voltammograms of the MWCNTs, MnO_2 and $MWCNTs-MnO_2$ electrode at the scan rate of 100 mV s⁻¹.

Fig. S4 The SEM images of MoO₃ (a) before and (b) after ball-milling. (c) EDS of MoO₃. (d) SEM images of surface and (e) side view of screen printed MWCNTs-MoO₃ on carbon nanoparticle electrode. (f) EDS of MWCNTs-MoO₃ electrode.

Fig. S5 The SEM image of MoO₃ electrode.

Fig. S6 Cyclic voltammograms of the MWCNTs, MoO_3 and $MWCNTs-MoO_3$ electrode at the scan rate of 100 mV s⁻¹.