Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Appendix 1

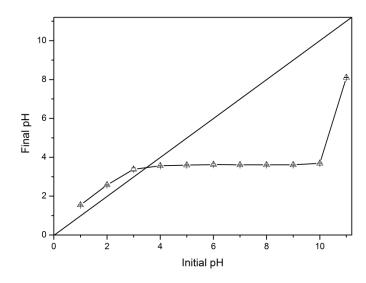


Fig. S1 The pH_{pzc} of SSA by pH drift method

Appendix 2

Nomenclature

	SMP	Sulfonated methyl phenol resin
	SSA	Sewage sludge-derived adsorbent
	WRB	Wheat straw biochar
	WEB	Walnut shell biochar
	тос	Total organic carbon
	COD	Chemical oxygen demand
C ₀		Initial concentration of SMP solution, (mg L ⁻¹)
C _e		Residual SMP concentration at equilibrium, (mg L ⁻¹)
m		SSA dosage, (g L ⁻¹)
t		Adsorption time (h)
q_t		Adsorption quality of SMP on SSA at various time t (mg g ⁻¹)
<i>a</i> .		Adsorption quality of SMP on SSA at equilibrium (mg g ⁻¹) for
q_1		pseudo-first-order kinetic model
k_1		The pseudo-first-order rate constant (h^{-1})
a.		Adsorption quality of SMP on SSA at equilibrium for the pseudo-
q_2		second-order kinetic model (mg g ⁻¹)
<i>k</i> ₂		Pseudo-second-order rate constant (g mg ⁻¹ h ⁻¹)
k _i		The intra-particle diffusion rate constant (mg g ⁻¹ h ^{-0.5})
Ι		Intercept for the intra-particle diffusion kinetic model (mg g ⁻¹)
q_m		Monolayer adsorption capacity of SMP on SSA estimated by
		Langmuir model (mg g ⁻¹)
b		Langmuir constant (L mg ⁻¹)
K_F		Freundlich constant (mg g ⁻¹ (mg L ⁻¹) ^{-1/n})
n		Heterogeneity factor of the Freundlich isotherm model
E_a		Adsorption activation energy in the SMP-SSA system (kj mol ⁻¹)
R		Gas constant (8.31 J (mol K) ⁻¹)
A		Pre-exponential factor
ΔG^0		Gibb's free energy change (kj mol ⁻¹)
ΔH^0		Enthalpy change (kj mol ⁻¹)
ΔS^0		Entropy changes (J mol ⁻¹ K ⁻¹)

Appendix 3

$$q_e = \frac{(C_0 - C_e)}{m}$$
 Eq. (1)

$$ln(q_1 - q_t) = lnq_1 - k_1 t$$
 Eq. (2)

$$\frac{t}{q_t} = \frac{1}{q_2^2 k_2} + \frac{t}{q_2}$$
 Eq. (3)

$$q_t = k_i t^{0.5} + I$$
 Eq. (4)

$$q_e = \frac{q_m C_e b}{1 + b C_e}$$
 Eq. (5)

$$q_e = K_F C_e^{1/n}$$
 Eq. (6)

$$k = Ae^{-\frac{a}{RT}}$$
 Eq. (7)

$$ln\frac{k_1}{k_2} = \frac{E_a(T_1 - T_2)}{RT_1T_2}$$
 Eq.

$$\Delta G^{0} = \Delta H^{0} - T \Delta S^{0}$$
Eq. (9)
$$ln \frac{q_{e} m}{C_{e}} = \frac{\Delta S^{0}}{R} - \frac{\Delta H^{0}}{R T}$$
Eq. (10)