Supplementary data:

Fulleropyrrolidines Derived from Dioxa- and Trioxaalkyl-tethered Diglycines

Tatjana Kop, Mira Bjelaković, Jelena Đorđević, Andrijana Žekić, Dragana Milić

Content:

1. General experimental details and procedures 2
2. Synthesis of the compounds 3-6 4
3. Synthesis of the fulleropyrrolidines $\mathbf{7 - 1 4}$ 5
4. Table S1 Visible region absorption bands $400-800 \mathrm{~nm}$ of bisadduct isomers 7
5. Table S2 ${ }^{13} \mathrm{C}$ NMR chemical shifts of the fullerene moiety of the bisadducts $\mathbf{7 - 1 3}$ 8
6. Table S3 ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR chemical shifts of the non-fullerene moiety of the adducts $\mathbf{7 - 1 4}$ 9
7. Figs S1-S51 NMR and HR-MS spectra of compounds 3-14 10
8. Fig. S52 Representative SEM images of samples of adducts 7-9 in differente solvents 42
9. Fig. S53 Representative SEM images of samples of adducts 10-14 in differente solvents 43
10. Fig. S54 CVs of compounds 7-19 in ODCB/DMF 2: 1 44
11. Fig. S55 CVs of compounds 7-13 in DCM 45
12. Figs S56-S63 HPTLC of bisadducts 7-14. 46

1. General experimental details and procedures

General: IR spectra were recorded with a Perkin-Elmer FTIR $1725 X$ spectrophotometer. UV spectra were recorded with a GBCCintra 40 UV-vis spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with Varian Gemini $200\left({ }^{1} \mathrm{H}\right.$ at 200 MHz , ${ }^{13} \mathrm{C}$ at 50 MHz) and Bruker Avance spectrometers (${ }^{1} \mathrm{H}$ at $500 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 125 MHz). Chemical shifts are measured in ppm, J in Hz. Sample was dissolved in the indicated solvent system, and TMS was used as an internal reference. The high-resolution MS spectra were obtained with an Agilent Technologies 6210 TOF LC-MS spectrometer. Dry-column flash chromatography (DCFC) was carried out with Merck silica gel $60(15-40 \mu \mathrm{~m})$. Thin layer chromatography (TLC) was carried out on precoated silica gel 60 F254 plates.

HPTLC. All substances were chromatographed on HPTLC silica gel 60 aluminium sheets (Merck, $4.0 \times 6.0 \mathrm{~cm}$) as a stationary phase. Samples were applied by CAMAG Linomat 5 "linomat5_130827" S/N 130827 (1.00.12) device. Spots were detected by CAMAG TLC Scanner 3 „Scanner3_131003" S/N 131003 (1.14.26), at 340 nm . Software application winCATS Planar Chromatography Manager SN 1311W038, V1.4.2 was used for data processing. In addition, UV spectra of the spots were obtained by scanning from 200-700 nm.
System toluene/ethyl-acetate 7:3 was used for HPTLC of bisadducts 7-9, while toluene/ethyl-acetate 1:1 was used for adducts 1014 as a mobile phase.

Morphology investigations: Investigations of sample morphology were carried out with SEM, using a $J E O L J S M-840 A$ instrument, at an acceleration voltage of 30 kV . The samples for investigation of morphology of self-organized stuctures of 7-14 were prepared by dissolving in differente solvents ($\mathrm{ODCB}, \mathrm{PhMe}, \mathrm{CHCl}_{3}, \mathrm{PhMe} / i-\mathrm{PrOH}(1: 1, \mathrm{v} / \mathrm{v}), \mathrm{PhMe} /$ dioxane $(1: 1, \mathrm{v} / \mathrm{v})$ at room temperature. A drop of 0.5 mM solution of fullerene derivative was deposited on the surface of a glass substrate (10×10 mm) and left during 24 h to slowly evaporate in a glass Petri dish (diameter 10 cm) under PhMe atmosphere at room temperature (the exceptions were made in case of ODCB solutions, in which 2-3 days were necessary for total evaporation of the solvent). The investigated samples were gold sputtered in a JFC 1100 ion sputter device and then subjected to SEM observations.

Electrochemical Measurements: The electrochemical behavior of C_{60} bis-adducts was investigated using 1 mM solutions of bisadducts 7-13 and 15-19 and difullerene 14 in dry and degased mixture ODCB/DMF 2:1, and in DCM (only bisadducts 7-13), both containing 0.1 M TBAP as a supporting electrolyte. In order to remove oxigen from the electrolyte, the system was bubbled with argon prior to each experiment and argon atmosphere above the liquid surface was maintained during the scans. The electrochemical mesurements were carried out on CH1760b Electrochemical workstation potentiostat (CH Instruments, Austin, $T X$) using conventional three-electrode cell (5 mL) equipped with GCE (glassy carbon electrode), as a working, $\mathrm{Ag} / \mathrm{Ag}^{+}$(a silver wire in contact with $0.01 \mathrm{M} \mathrm{AgNO}_{3}$ and $0.10 \mathrm{M} \mathrm{TBAP} \mathrm{in} \mathrm{acetonitrile)}$, electrodes, calibrated with a ferrocene/ferrocenyl couple $\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right)$as an internal standard. All experiments were performed at room temperature in the potential range of -2.5 to $0.5 \mathrm{~V} \mathrm{vs} \mathrm{Ag} / \mathrm{Ag}^{+}$(i.e. -3.0 to $0.0 \mathrm{~V} \mathrm{vs} \mathrm{Fc} / \mathrm{Fc}^{+}$), at sweep rates between 0.01 and $1 \mathrm{~V} / \mathrm{s}$. All half-wave reduction potentials are presented in V vs $\mathrm{Fc} / \mathrm{Fc}^{+}$(measured $E_{1 / 2}$ of $\mathrm{Fc} / \mathrm{Fc}^{+}: 0.552$ and 0.674 V vs $\mathrm{Ag} / \mathrm{Ag}^{+}$in DCM and ODCB/DMF $2: 1$, respectively).

Antioxidant Activity in vitro: The antioxidant capacity was determined according to a published procedure with minor changes. Preparation of liposomal gel of fullerene C_{60} and fullerene derivatives 7-14 ${ }^{1}$. Liposomes were composed of tested compounds and soybean lecithin in 1:4 mass ratio. Measured fullerene or fullerene bisadduct ($0.1-1 \mathrm{mg}$) and fourfold mass of lecithin are solubilized in minimal volume of PhMe under the ultrasound for 1 minute. Solvent was evaporated and film of lipid-fullerene complex carefully diluted on vortex with deionized water to the concentration of the fullerenic component of $0.02 \mathrm{mg} / \mathrm{mL}$. The final concentration of the pure compound of $0.002 \mathrm{mg} / \mathrm{mL}$ was obtained prior to use mixing the solution with water in 1:9 ratio.

[^0]FOX reagent preparation ${ }^{2}$. Working FOX reagent was preared by adding 10 mL of Reagent $2\left(98 \mathrm{mg}\right.$ of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \times 6 \mathrm{H}_{2} \mathrm{O}$ (FAS) in 100 mL of $250 \mathrm{mM} \mathrm{H}_{2} \mathrm{SO}_{4}$) to 900 mL of Reagent 1 (95 mg of xylenol orange sodium salt (XO) and 880 mg of 2,6-di-t-butyl-4-methylphenol (BHT) in 900 mL of MeOH) giving the final concentrations of $250 \mu \mathrm{M} \mathrm{FAS}, 125 \mu \mathrm{M}$ of $\mathrm{XO}, 25 \mathrm{mM}$ $\mathrm{H}_{2} \mathrm{SO}_{4}$, and 4 mM BHT. The reagent was consumed within 24 h . The apsorbance was measured at 560 nm by UV-vis spectrophotometer GBC-Cintra 40 with $90 \% \mathrm{MeOH}$ as a zero probe.

The applicability of the method in used range of peroxide concentration was confirmed by preparing standard calibration curve using increasing concentrations of peroxide (TBHP or $\mathrm{H}_{2} \mathrm{O}_{2} ; 0-200 \mu \mathrm{M}$) incubated with FOX reagent at room temperature for 30 \min. Absorbances measured at 560 nm at the different concentrations confirmed linear correlation.

Sample preparation. The fullerenesomes and vitamin C solutions ($0.02 \mathrm{mg} / \mathrm{mL}$) were diluted by nine-fold volume of water to gain $0.002 \mathrm{mg} / \mathrm{mL}$ concentration prior to use ($0.050 \mathrm{~mL}: 0.450 \mathrm{~mL}$ of water). The same volume of $200 \mu \mathrm{M}$ peroxide (obtained by diluting 0.050 mL of 2 mM peroxide with 0.450 mL of water) was added to the sample and vortexed for 1 min . After 10 min of incubation at room temperature, to an aliquot of 0.050 mL of the sample 0.950 mL of FOX reagent was added. Absorbance at 560 nm was determined for each sample after 80 min . of incubation at room temperature.

Standard probe preparation. The standard probe of peroxides were prepared by mixing the same volume of $200 \mu \mathrm{M}$ peroxide (obtained by diluting 0.050 mL of 2 mM peroxide with 0.450 mL of water) and water. To a 0.050 mL of mixture 0.950 mL of FOX reagent was added. The absorbance of the standard probe, determined after 80 min ., reffers to the starting (maximum) concentration of the peroxide, prior to incubation. Difference of absorbances of the standard probe (As) and sample (A) is proportional to the quantity of the consumed peroxide by the sample compound.

Blank probe preparation. The blank probe contained 0.950 mL of FOX reagent and 0.050 mL of water. Apsorbance of the blank probe measured at $560 \mathrm{~nm}\left(\mathrm{~A}_{0}\right)$ reffers to the color of the reagent itself in the absence of the peroxide, and all absorbances of the samples and standards are diminished by the value of A_{0} for the calculations of the peroxide concentration. All experiments were performed in triplicates, and the average values were taken.

Antioxidative capacities were calculated according to formula (1):

$$
\begin{equation*}
\Delta(\%)=100 \times\left(\mathrm{A}-\mathrm{A}_{\mathrm{s}}\right) /\left(\mathrm{A}_{\mathrm{s}}-\mathrm{A}_{0}\right), \tag{1}
\end{equation*}
$$

where A_{0}, As and A are apsorbance values determined at the same conditions for blank probe, standard peroxide solution and probe, respectively.

The antioxidant activities relative to the equimolar concentration of vitamin C were calculated using the equation (2):

$$
\begin{equation*}
\mathrm{AOA}_{\text {mol }} \text { vs vit } \mathrm{C}=\left(\Delta / \Delta_{\mathrm{vit}} \mathrm{C}\right) /\left(\mathrm{M} / \mathrm{M}_{\mathrm{vit}} \mathrm{C}\right) \tag{2}
\end{equation*}
$$

where Δ and Δ vit C represent the direct antioxidant capacity of the tested compound and vitamin C, respectivelly and M and $M_{\text {vit }}$ their molecular weights.

The antioxidant activities relative to the equimolar concentration of the fullerene C_{60} were calculated using the equation (3):

$$
\begin{equation*}
\mathrm{AOA}_{\mathrm{mol}} \text { vs } \mathrm{C}_{60}=\left(\Delta / \Delta_{\mathrm{C} 60}\right) /\left(\mathrm{M} / \mathrm{M}_{\mathrm{C} 60}\right) \tag{3}
\end{equation*}
$$

where Δ and $\Delta \mathrm{C}_{60}$ represent the direct antioxidant capacity of the tested compound and the C_{60}, respectivelly and M and $\mathrm{M}_{\mathrm{C} 60}$ their molecular weights.

[^1]Dibenzyl- $\boldsymbol{N}, \boldsymbol{N}^{\boldsymbol{\prime}}$-(3,6-dioxaoctane-1,8-diyl)diglycinate (3). To an ice-cooled solution of diamine $\mathbf{1}$ ($4.06 \mathrm{~g}, 4.00 \mathrm{~mL}, 0.027 \mathrm{~mol}, 1$ mol equiv) and TEA ($5.53 \mathrm{~g}, 7.80 \mathrm{~mL}, 0.055 \mathrm{~mol}, 2 \mathrm{~mol}$ equiv) in $\mathrm{DCM}(160 \mathrm{~mL})$, solution of BBA ($12.6 \mathrm{~g}, 8.60 \mathrm{~mL}, 0.055 \mathrm{~mol}$, 2 mol equiv) in DCM (80 mL), was added dropwise, during 5 h . After additional stirring for 24 h , mixture was washed with $\mathrm{H}_{2} \mathrm{O}$ (3 $\mathrm{x} 100 \mathrm{~mL})$ and then with brine (2 x 100 mL), and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the remaining material was purified on a SiO_{2} column by dry-flash chromatography. Dibenzyl- N, N^{\prime}-(3,6-dioxaoctane-1,8-diyl)diglycinate (3) was isolated as a colourless oil ($4.94 \mathrm{~g}, 41 \%$) using EtOAc/MeOH 9:1 as an eluent. IR (ATR): $\tilde{v} / \mathrm{cm}^{-1} 3379,3031,2872,1745$, $1665,1456,1353,1198,1117,1023,746,702$. NMR: $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right): 7.34\left(5 \mathrm{H}, s, \mathrm{CH}^{\mathrm{Ar}}\right) ; 5.15\left(2 \mathrm{H}, s, \mathrm{CH}_{2}^{\mathrm{Br}}\right) ; 3.61$ $\left(2 \mathrm{H}, s, \mathrm{CH}_{2}{ }^{4}\right) ; 3.61\left(2 \mathrm{H}, t, J=5.0 \mathrm{~Hz}, \mathrm{CH}_{2}{ }^{2}\right) ; 3.51\left(2 \mathrm{H}, s, \mathrm{CH}_{2}{ }^{\mathrm{Gly}}\right) ; 3.31(1 \mathrm{H}, b r s, \mathrm{~N} H) ; 2.83 \mathrm{ppm}\left(2 \mathrm{H}, t, J=5.0 \mathrm{~Hz}, \mathrm{CH}_{2}{ }^{1}\right) . \delta \mathrm{C}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right): 171.88(\mathrm{C}=\mathrm{O}) ; 135.49\left(\mathrm{C}_{\mathrm{q}}{ }^{\mathrm{Ar}}\right.$); 128.49; 128.28; and $128.25\left(\mathrm{CH}^{\mathrm{Ar}}\right) ; 70.22$ and $70.04\left(\mathrm{CH}_{2}{ }^{2,4}\right) ; 66.48\left(\mathrm{CH}_{2}{ }^{\mathrm{Bn}}\right)$; $50.62\left(\mathrm{CH}_{2}{ }^{\mathrm{Gly}}\right) ; 48.63 \mathrm{ppm}\left(\mathrm{CH}_{2}{ }^{1}\right)$. HR-MS: m / z calc. for $\left[\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{H}\right]^{+}: 445.23331$, measured 445.23183; calc. for $\left[\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}: 467.21526$, measured 467.21342.
Dibenzyl- N, N^{\prime}-(4,7,10-trioxatridecane-1,13-diyl)diglycinate (4) To an ice-cooled solution of diamine 7 ($4.02 \mathrm{~g} ; 4.00 \mathrm{~mL}$; 0.018 mol; 1 mol equiv) and TEA ($3.68 \mathrm{~g} ; 5.04 \mathrm{~mL} ; 0.036 \mathrm{~mol} ; 2 \mathrm{~mol}$ equiv) in DCM (112 mL), solution of BBA ($8.34 \mathrm{~g} ; 5.72 \mathrm{ml}$; $0.036 \mathrm{~mol} ; 2 \mathrm{~mol}$ equiv) in DCM (56 mL), was added dropwise, during 6 h . After additional stirring for 20h, mixture was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$ and then with brine ($2 \times 100 \mathrm{~mL}$), and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the remaining material was purified on a SiO_{2} column by dry-flash chromatography. Dibenzyl- $N, N^{\prime}-(4,7,10$-trioxatridecane-1,13diyl)diglycinate (4) was isolated as a colourless oil ($1.54 \mathrm{~g}, 33 \%$) using EtOAc/ $\mathrm{MeOH} 4: 1$ as an eluent. IR (ATR): $\tilde{v} / \mathrm{cm}^{-1} 3340$, $3063,3033,2941,2868,1742,1458,1350,1212,1184,1150,968,750,701$. NMR: $\delta \mathrm{H}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 7.35(s, 5 \mathrm{H}$, $\left.\mathrm{CH}^{\mathrm{Ar}}\right) ; 5.16\left(s, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{Bn}}\right) ; 3.68-3.48\left(m, 6 \mathrm{H}, \mathrm{CH}_{2}{ }^{3,5,6}\right) ; 3.44\left(s, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{Gly}}\right) ; 2.69\left(t, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{1}\right) ; 1.86(s, 1 \mathrm{H}, \mathrm{NH}) ; 1.77$ ppm (quint, $\left.J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{2}\right) . \delta \mathrm{C}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 172.33(\mathrm{C}=\mathrm{O}), 135.59\left(\mathrm{C}_{\mathrm{q}}{ }^{\mathrm{Ar}}\right), 128.53 ; 128.29\left(\mathrm{CH}^{\mathrm{Ar}}\right), 70.50 ; 70.10$ $\left(\mathrm{CH}_{2}{ }^{5,6}\right), 69.52\left(\mathrm{CH}_{2}{ }^{3}\right), 66.38\left(\mathrm{CH}_{2}{ }^{\mathrm{Bn}}\right), 50.91\left(\mathrm{CH}_{2}{ }^{\mathrm{Gly}}\right), 46.81\left(\mathrm{CH}_{2}{ }^{1}\right), 29.86 \mathrm{ppm}\left(\mathrm{CH}_{2}{ }^{2}\right)$. HR-MS: m / z calc. for
$\left[\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{7}+2 \mathrm{H}\right]^{2+}: 259.14905$, measured 259.14980; calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{7}+\mathrm{Na}\right]^{+}: 539.27277$, measured 539.27333; calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{7}+\mathrm{H}\right]^{+}: 517.29083$, measured 517.29112.
$\boldsymbol{N}, \boldsymbol{N}^{\prime}$-(3,6-dioxaoctane-1,8-diyl)diglycine (5). To a solution of dibenzyl ester 3 ($1.61 \mathrm{~g} ; 3.622 \mathrm{mmol}, \mathrm{MeOH} 100 \mathrm{~mL}$) $5 \% \mathrm{Pd} / \mathrm{C}$ was added (161 mg) and suspension was bubbled with argon. Mixture was hydrogenated at 40 psi for 20 h . After filtering the catalyst and evaporating the solvent, crude diacid 5 was isolated as colorless oil (940 mg ; 98\%). It was characterized spectroscopicaly and used for cycloaddition reaction without further purification. IR (ATR): $\tilde{v} / \mathrm{cm}^{-1} 3093,2955,2890,1626,1573$, $1462,1417,1371,1310,1242,1211,1118,1085,868,600,563$. NMR: $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{Me}_{4} \mathrm{Si}\right) 3.82(t, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2}{ }^{2}$); $3.73\left(s, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{4}\right) ; 3.61\left(s, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{Gly}}\right) ; 3.29\left(t, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{1}\right) \mathrm{ppm} . \delta \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{Me}_{4} \mathrm{Si}\right) 171.54(\mathrm{C}=\mathrm{O})$; $71.13\left(\mathrm{CH}_{2}{ }^{4}\right)$; $66.95\left(\mathrm{CH}_{2}{ }^{2}\right)$; $50.43\left(\mathrm{CH}_{2}{ }^{\text {Gly }}\right) ; 48.16\left(\mathrm{CH}_{2}{ }^{1}\right)$ ppm. HR-MS: m / z calc. for $\left[\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{H}\right]^{+}: 265.13941$, measured 265.13866; calc.for $\left[\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}: 287.12136$, measured 287.11965.
$\boldsymbol{N}, \boldsymbol{N}^{\prime}$-(4,7,10-trioxatridecane-1,13-diyl)diglycine (6). To a solution of dibenzyl ester $\mathbf{4}(840 \mathrm{mg} ; 1.626 \mathrm{mmol}$, MeOH 100 mL) $5 \% \mathrm{Pd} / \mathrm{C}$ was added $(85 \mathrm{mg})$ and suspension was bubbled with argon. Mixture was hydrogenated at 40 psi for 20 h . After filtering the catalyst and evaporating the solvent, crude diacid 6 was isolated as a colorless oil (530 mg ; 97%). IR (ATR): $\tilde{v} / \mathrm{cm}^{-1} 3315$, $3064,2926,2874,1740,1620,1600,1454,1395,1324,1243,1208,1134,733,697$. NMR: $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{Me}_{4} \mathrm{Si}\right) 3.69-$ $3.61\left(m, 6 H, \mathrm{CH}_{2}{ }^{3,5,6}\right) ; 3.52\left(s, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{Gly}}\right) ; 3.18\left(t, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{1}\right) ; 1.98 \mathrm{ppm}\left(q u i n t, J=6.0,2 \mathrm{H}, \mathrm{CH}_{2}{ }^{2}\right) . \delta \mathrm{C}(125 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}, \mathrm{Me}_{4} \mathrm{Si}\right) 171.28(\mathrm{C}=\mathrm{O}) ; 71.50\left(\mathrm{CH}_{2}{ }^{5,6}\right) ; 70.73\left(\mathrm{CH}_{2}{ }^{3}\right) ; 50.98\left(\mathrm{CH}_{2}{ }^{\mathrm{Gly}}\right) ; 48.32\left(\mathrm{CH}_{2}{ }^{1}\right) ; 27.23 \mathrm{ppm}\left(\mathrm{CH}_{2}{ }^{2}\right)$. HR-MS: m / z calc. for $\left[\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7}+2 \mathrm{H}\right]^{2+}: 169.10210$, measured 169.10168; calc. for $\left[\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{7}+\mathrm{H}\right]^{+}: 337.19693$, measured 337.19538; calc. for $\left[\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7}+\mathrm{Na}\right]^{+}: 359.17887$, measured 359.17724.

[^2]
3. Synthesis of the fulleropyrrolidines $\mathbf{7 - 1 4}{ }^{3}$

Bisadducts 7-9. A suspension of $\mathrm{C}_{60}(545 \mathrm{mg} ; 0.757 \mathrm{mmol} ; 1 \mathrm{~mol}$ equiv), diglycine 5 ($200 \mathrm{mg} ; 0.757 \mathrm{mmol} ; 1 \mathrm{~mol}$ equiv) and HCHO ($230 \mathrm{mg} ; 7.570 \mathrm{mmol}$; 10 mol equiv) in ODCB (150 mL) was maintained at $160^{\circ} \mathrm{C}$ during 4 h . The obtained reaction mixture was cooled to room temperature, mixed with the same volume of hexane, deposited directly on the top of the SiO_{2} column (to remove solvent without further heating) and separated by dry-flash column chromatography. Elution with toluene yielded unreacted C_{60} (220 mg ; 40.4\%). Bisadducts ($187.7 \mathrm{mg} ; 27.0 \%$) were eluted by listed eluents: bisadduct 7 (cis-1, $17.3 \mathrm{mg} ; 2.5 \%$) was eluted with $\mathrm{PhMe} / \mathrm{EtOAc} 7: 3$, bisadduct 8 (cis-2; $124.6 \mathrm{mg} ; 17.9 \%$) with $\mathrm{PhMe} / E t O A c ~ 6: 4$ and bisadduct 9 (cis-3; 45.8 mg ; 6.6%) with $\mathrm{PhMe} /$ EtOAc $1: 1$. All products were purified by precipitation with MeOH from highly concentrated $\mathrm{CS}_{2} / \mathrm{DCM}$ solutions.

Bisadduct 7 (cis-1): $R_{\mathrm{f}}=0.52$ ($\mathrm{PhMe} / \mathrm{EtOAc} 1: 1$); UV/Vis: $\lambda_{\max }(\mathrm{PhMe}) / \mathrm{nm} 330\left(\varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1} 30000\right), 402$ (7000), 427 (6000), 622 (210), 654 (200), 684 (160), 722 (160). IR (ATR) $\tilde{v} / \mathrm{cm}^{-1} 2923,2851,2785,2334,2024,1505,1453,1427,1334,1304,1203$, $1150,1115,964,757 . \mathrm{NMR}: \delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 4.80\left(d, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}^{\text {pyrr }}\right) ; 4.47\left(d, J=8.5 \mathrm{~Hz} 2 \mathrm{H}, \mathrm{CH}^{\text {pyrr }}\right) ; 4.01$ ($\left.d, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}^{\text {pyrr }}\right) ; 4.00-3.92\left(m, 4 \mathrm{H}, \mathrm{CH}_{2}^{2,7}\right), 3.88-3.82\left(m, 2 \mathrm{H}, \mathrm{CH}_{2}^{4,5}\right) ; 3.82-3.76\left(m, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{4}, 5^{\prime}\right) ; 3.52(d, J=10.0 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}^{\text {pyr }}\right) ; 3.38\left(d d d, J=3.0 ; 7.0 ; 13.5 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}^{1,8}\right) ; 3.11\left(d d d, J=3.0 ; 5.5 ; 14.0 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}^{1,8}\right)$ ppm. $\delta \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 151.96$ (2C); 151.15 (2C); 150.58 (2C); 148.79 (2C); 147.87 (2C); 147.08 (2C); 146.82 (2C); 146.20 (2C); 145.96 (2C); 145.92 (1C); 145.37 (2C); 145.18 (2C); 144.89 (2C); 144.84 (2C); 144.42 (2C); 144.11 (2C); 143.88 (2C); 143.79 (2C); 143.59 (2C); 142.87 (2C); 142.55 (1C); 142.30 (2C); 142.24 (1C); 142.17 (2C); 141.82 (2C); 141.58 (2C); 140.61 (2C); 137.85 (1C); 135.08 (2C); $134.89(2 \mathrm{C}) ; 69.46\left(\mathrm{C}^{4,5}\right) ; 68.63\left(\mathrm{C}^{2,7}\right) ; 67.59\left(2 s p 3-\mathrm{C}^{\text {full }}\right) ; 66.42\left(2 \mathrm{CH}^{\text {pyrr }}\right) ; 66.16\left(2 s p 3-\mathrm{C}^{\text {full }}\right) ; 66.06\left(2 \mathrm{CH}^{\text {pyrr }}\right) ; 52.91$ ppm ($\mathrm{C}^{1,8}$). HR-MS: m / z calc. for $\left[\mathrm{C}_{70} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}: 921.15975$, measured 921.15538.
Bisadduct 8 (cis-2): $R_{\mathrm{f}}=0.43$ (PhMe/EtOAc 1:1); UV/Vis: $\lambda_{\max }(\mathrm{PhMe}) / \mathrm{nm} 310\left(\varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1} 40000\right) ; 374$ (4900); 448 (4800); 487 (3000); 572 (910); 647 (430); 680 (280). IR(ATR): $\tilde{v} / \mathrm{cm}^{-1} 2930,2880,2852,2808,2771,1509,1457,1425,1347,1314,1179$, $1129,1110,1081,973,733,526 . \mathrm{NMR}: \delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 5.34\left(d d, J=10.0 ; 2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}^{\text {pyr }}\right), 4.27(d d, J=9.0 ; 2.0$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}^{\text {pyrr }}\right) ; 4.02$ ($\left.d d d, J=2.5 ; 8.0 ; 9.5 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}^{2,7}\right) ; 3.90-3.80\left(m, 6 \mathrm{H}^{2} \mathrm{CH}_{2}{ }^{2}, 7,4,4\right) ; 3.64\left(d, J=9.0 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}^{\text {pyrr }}\right) ; 3.52$ ($\left.d d d, J=2.5 ; 5.5 ; 13.0 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}^{1,8}\right) ; 3.32\left(d, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}^{\text {pyrr }}\right) ; 2.83 \mathrm{ppm}\left(d d d, J=2.0,8.0 ; 13.0 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}^{1^{\prime}, 8^{\prime}}\right) . \delta \mathrm{C}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}$) 159.83 (2C); 155.61 (2C); 149.12 (2C); 148.80 (1C); 148.72 (1C); 148.56 (1C); 147.49 (2C); 147.18 (2C); 147.04 (2C); 146.72 (2C); 146.58 (2C); 146.23 (2C); 146.18 (2C); 146.00 (2C); 145.74 (2C); 145.37 (2C); 145.18 (2C); 145.08 (2C); 144.60 (2C); 144.57 (2C); 144.26 (2C); 143.94 (2C); 143.81 (2C); 143.01 (2C); 141.51 (2C); 140.71 (2C); 139.05 (2C); $133.53(2 \mathrm{C}) ; 132.89(2 \mathrm{C}) ; 129.49(1 \mathrm{C}) ; 71.88\left(\mathrm{C}^{2,7}\right) ; 70.38\left(\mathrm{C}^{4,5}\right) ; 68.50\left(2 \mathrm{CH}^{\text {pyrr }}\right) ; 68.48\left(2 \mathrm{CH}^{\text {pyrr }}\right) ; 67.78\left(2 \mathrm{sp} 3-\mathrm{C}^{\text {full }}\right) ; 67.74(2 \mathrm{sp} 3-$ $\left.\mathrm{C}^{\text {full }}\right)$; $52.55 \mathrm{ppm}\left(\mathrm{C}^{1,8}\right)$. HR-MS: m / z calc. for $\left[\mathrm{C}_{70} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}: 921.15975$; measured 921.16010.
Bisadduct 9 (cis-3): $R_{\mathrm{f}}=0.17$ ($\mathrm{PhMe} / E t O A c 1: 1$); $R_{\mathrm{f}}=0.48(\mathrm{PhMe} / \mathrm{MeOH} 4: 1) ; \mathrm{UV} / \mathrm{Vis}: \lambda_{\text {max }}(\mathrm{PhMe}) / \mathrm{nm} 300\left(\varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right.$ 47000); 331 (31000); 391 (11000); 431 (2900); 467 (2000); 548 (800); 657 (360); 732 (280). IR (ATR): $\tilde{v} / \mathrm{cm}^{-1} 2916,2859,2772$, $1676,1451,1427,1341,1305,1274,1112,965,759,521$. NMR: $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 4.68(d d, J=9.5 ; 2.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}^{\text {pyrr }}$); $4.47\left(d d, J=9.0 ; J=2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}^{\text {pyrr }}\right) ; 4.08\left(d, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}^{\text {pyrr }}\right) ; 3.93-3.90\left(m, 2 \mathrm{H}, \mathrm{CH}^{4,5}\right) ; 3.90-3.83(m, 4 \mathrm{H}$, $\mathrm{CH}_{2}{ }^{2,7}$); 3.83-3.78 ($m, 2 \mathrm{H}, \mathrm{CH}^{4,5}$) ; $3.71\left(d d d, 12.5 ; 9.5 ; 5.0 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}^{1,8}\right) ; 3.49\left(d, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}^{\text {pyrr }}\right) ; 2.85 \mathrm{ppm}(d t, J=12.5$; $4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}^{1,8}$). $\delta \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 153.95$ (2C); 149.64 (2C); 149.05 (2C); 148.55 (2C); 148.23 (2C); 148.22 (2C); 147.77 (2C); 146.90 (2C); 146.59 (2C); 146.23 (2C); 146.05 (2C); 145.93 (2C); 145.70 (2C); 145.66 (2C); 145.10 (2C); 144.91 (2C); 144.71 (2C); 142.16 (2C); 142.12 (4C); 142.06 (2C); 141.70 (2C); 139.74 (2C); 138.21 (2C); 137.07 (2C); 135.36 (2C); $134.64(2 \mathrm{C}) ; 130.26(2 \mathrm{C}) ; 70.87\left(\mathrm{C}^{4,5}\right) ; 70.36\left(2 s p 3-\mathrm{C}^{\text {full }}\right) ; 69.41\left(\mathrm{C}^{2,7}\right) ; 69.09\left(2 \mathrm{CH}_{2}{ }^{\text {pyrr }}\right) ; 66.44\left(2 s p 3-\mathrm{C}^{\text {full }}\right) ; 65.72\left(2 \mathrm{CH}_{2}{ }^{\text {pyrr }}\right)$; $52.28 \mathrm{ppm}\left(\mathrm{C}^{1,8}\right)$. HR-MS: m / z calc. for $\left[\mathrm{C}_{70} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}: 921.15975$, measured 921.15997.

Compounds 10-14. A suspension of diacid $6\left(255 \mathrm{mg} ; 0.757 \mathrm{mmol} ; 1 \mathrm{~mol}\right.$ equiv), C_{60} ($545 \mathrm{mg} ; 0.757 \mathrm{mmol} ; 1 \mathrm{~mol}$ equiv) and HCHO (230 mg ; 7.57 mmol ; 10 mol equiv) in $\mathrm{ODCB}\left(150 \mathrm{ml}\right.$) was maintained at $160^{\circ} \mathrm{C}$ during 4 h . The obtained reaction mixture was cooled to room temperature, mixed with the same volume of hexane, deposited directly on the top of the SiO_{2} column (to remove solvent without further heating) and separated by dry-flash column chromatography (DFC). DFC yielded: C_{60} (300 mg ; 54.5%; eluent: toluene) difullerene 14 (20.5 mg ; 3.2%; eluent: $\mathrm{PhMe} / \mathrm{EtOAc} 8: 2$) and bisadducts (total yield $194.6 \mathrm{mg} ; 24.8$ \%): bisadduct 10 (cis-1; $18.9 \mathrm{mg} ; 2.5 \%$), eluted with $\mathrm{PhMe} / \mathrm{EtOAc} 7: 3$, bisadduct $\mathbf{1 3}$ (eq; $24.7 \mathrm{mg} ; 3.3 \%$), eluted with PhMe/EtOAc 6:4, bisadduct 12 (cis-3, 60.5 mg ; 7.0 \%), eluted with PhMe/EtOAc 1:1 and bisadduct 11 (cis-2; $90.5 \mathrm{mg} ; 12.0 \%$) eluted also with $\mathrm{PhMe} / \mathrm{EtOAc}$ 1:1. All products were purified by precipitation with MeOH from highly concentrated DCM solutions.

Bisadduct 10 (cis-1): $R_{\mathrm{f}}=0.46$ (PhMe/EtOAc 1:1). UV/Vis: $\lambda_{\max }(\mathrm{PhMe}) / \mathrm{nm} 328\left(\varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1} 32000\right) ; 406$ (7000); 430 (5900); 623 (200); 651 (170); 676 (140); 710 (140). IR (ATR): $\tilde{v} / \mathrm{cm}^{-1} 2944,2870,2810,1466,1426,1355,1169,1124,735$. NMR: $\delta \mathrm{H}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}$) $4.28\left(d, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}^{\text {pyr }}\right) ; 4.26\left(d, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}^{\text {pyrr }}\right) ; 4.04\left(d, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}^{\text {pyrr }}\right) ; 3.98$ ($\left.d d d, J=5.0 ; 8.0 ; 10.0 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}^{3,11}\right) ; 3.86-3.76\left(m, 10 \mathrm{H}, \mathrm{CH}^{3^{\prime}, 11^{\prime}}, 4 \mathrm{CH}_{2}-\mathrm{O}\right) ; 3.66\left(d, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}^{\text {pyrr }}\right) ; 3.23(d d d, J=7.0$; $8.0 ; 11.5 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}^{1,13}$); 2.98 ($d d d, J=5.5 ; 8.5 ; 12.0 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}^{1,13}$); 2.23-2.07 ppm ($m, 4 \mathrm{H}, \mathrm{CH}_{2}^{2,12}$). $\delta \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 151.90$ (2C); 151.06 (2C); 150.19 (2C); 148.93 (2C); 148.05 (2C); 147.24 (2C); 146.99 (2C); 146.34 (2C); 146.09 (2C); 145.91 (1C); 145.43 (2C); 145.34 (2C); 145.00 (4C); 144.57 (2C); 144.22 (2C); 144.04 (2C); 143.96 (2C); 143.72 (2C); 143.00 (2C); 142.69 (1C); 142.43 (2C); 142.34 (1C); 142.30 (2C); 141.91 (2C); 141.56 (2C); 140.77 (2C); 137.94 (1C); 135.24 (2C); $135.06(2 \mathrm{C}), 70.91(\mathrm{C}-\mathrm{O}) ; 70.22(\mathrm{C}-\mathrm{O}) ; 69.34\left(\mathrm{C}^{3,11}\right) ; 68.46\left(2 \mathrm{CH}_{2}{ }^{\text {pyrr }}\right) ; 68.10\left(2 \mathrm{sp} 3-\mathrm{C}^{\text {full }}\right) ; 66.59\left(2 \mathrm{CH}_{2}{ }^{\text {pyrr }}\right) ; 65.73(2 s p 3$-C full $)$; $52.47\left(\mathrm{C}^{1,13}\right) ; 28.87 \mathrm{ppm}\left(\mathrm{C}^{2,12}\right)$. HR-MS: m / z calc. for $\left[\mathrm{C}_{74} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}$: 993.21727, measured 993.21561.
Bisadduct 11 (cis-2): $R_{\mathrm{f}}=0.16(\mathrm{PhMe} / \mathrm{EtOAc} 1: 1) ; R_{\mathrm{f}}=0.46(\mathrm{PhMe} / \mathrm{MeOH} 4: 1)$. UV/Vis: $\lambda_{\max }(\mathrm{PhMe}) / \mathrm{nm} 310\left(\varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right.$ 43000); 375 (5300); 448 (5100); 483 (3000); 578 (900); 643 (420); 679 (280). IR(ATR): $\tilde{v} / \mathrm{cm}^{-1} 2879,2775,1452,1345,1244$, $1120,1093,914,724,526 . \mathrm{NMR}: \delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 4.01\left(d, J=9.0 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}^{\text {pyrr }}\right) ; 3.96\left(d, J=9.0 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}^{\text {pyrr }}\right)$; 3.93 ($\left.d, J=9.5 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}^{\text {pyrr }}\right)$; 3.83-3.75 ($m, 4 \mathrm{H}, \mathrm{CH}_{2}{ }^{3,11}$); $3.81\left(d, J=9.5 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}^{\text {pyrr }}\right) ; 3.81-3.70\left(m, 4 \mathrm{H}, 2 \mathrm{CH}_{2}-\mathrm{O}\right) ; 3.72-3.67$ $\left(m, 4 \mathrm{H}, 2 \mathrm{CH}_{2}-\mathrm{O}\right) 3.16\left(d t, J=12.0 ; 7.0 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}^{1,13}\right) ; 2.90\left(d t, J=12.0 ; 6.0 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}^{1}, 13^{\prime}\right) ; 2.07 \mathrm{ppm}(q u i n t, J=5.5 \mathrm{~Hz} ; 4 \mathrm{H}$, $\mathrm{CH}_{2}^{2,12}$). $\delta \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 159.01(2 \mathrm{C}) ; 156.41(2 \mathrm{C}) ; 149.27(2 \mathrm{C}) ; 148.86$ (1C); 148.78 (1C); 148.27 (1C), 147.93 (2C); 147.64 (2C); 147.51 (2C); 147.05 (2C); 146.89 (2C); 146.46 (2C); 146.11 (2C), 145.71 (2C); 145.70 (2C); 145.65 (2C); 145.34 (2C); 145.15 (2C); 144.83 (2C); 144.57 (2C); 144.43 (2C); 144.18 (2C); 144.01 (2C); 142.98 (2C); 141.63 (2C); 140.94 (2C); 138.86 (2C); 133.79 (2C); 133.05 (2C); 129.18 (1C); $70.69(\mathrm{C}-\mathrm{O}) ; 70.58(\mathrm{C}-\mathrm{O}) ; 68.76$ ($\mathrm{C}^{3,11}$); 68.22 ($2 \mathrm{CH}^{\text {pyrr }}$); 67.43 $\left(2 \mathrm{CH}^{\text {pyrr }}\right) ; 67.35\left(2 s p 3-\mathrm{C}^{\text {full }}\right) ; 67.07\left(2 s p 3-\mathrm{C}^{\text {full }}\right) ; 50.96\left(\mathrm{C}^{1,13}\right) ; 28.69 \mathrm{ppm}\left(\mathrm{C}^{2,12}\right)$. HR-MS: m / z calc. for $\left[\mathrm{C}_{74} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}$: 993.21727, measured 993.21682.

Bisadduct 12 (cis-3): $R_{\mathrm{f}}=0.34$ (PhMe/EtOAc 1:1). UV/Vis: $\lambda_{\max }(\mathrm{PhMe}) / \mathrm{nm} 299$ ($\left.\varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1} 49000\right) ; 330$ (34000); 398 (9600), 435 (3900); 464 (2600); 551 (1400); 640 (470); 729 (320). IR(ATR): $\tilde{v} / \mathrm{cm}^{-1} 2944,2864,2801,2778,1455,1343,1120$, 767, 526. NMR: $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 4.36\left(d d, J=9.0 ; 1.5 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}^{\text {pyrr }}\right) ; 4.28\left(d d, J=9.5 ; 1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}^{\text {pyrr }}\right) ; 3.90-$ $3.84\left(m, 2 H, \mathrm{CH}^{3,11}\right) ; 3.85-3.75\left(m, 8 \mathrm{H}, 4 \mathrm{CH}_{2}-\mathrm{O}\right) ; 3.78\left(d, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}^{\text {pyrr }}\right) ; 3.70\left(d t, J=10.0 ; 5.5 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}^{3}, 11^{\prime}\right) ; 3.61(d$, $\left.J=9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}^{\text {pyrr }}\right) ; 3.25\left(d t, J=12.0 ; 7.0 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}^{1,13}\right) ; 2.81\left(d t, J=12.0 ; 6.0 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}^{1}, 13^{\prime}\right) ; 2.11-1.99 \mathrm{ppm}(m, 4 \mathrm{H}$, $\mathrm{CH}_{2}^{2,12}$). $\delta \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 153.49(2 \mathrm{C}) ; 149.79(2 \mathrm{C}) ; 149.09(2 \mathrm{C}) ; 148.61(2 \mathrm{C}) ; 148.29(2 \mathrm{C}) ; 148.08(2 \mathrm{C}) ; 147.78(2 \mathrm{C})$; 147.03(2C); 146.26(2C); 146.15(2C); 146.12(2C); 145.98(2C); 145.76(2C); 145.62(2C); 145.18(2C); 144.98(2C); 144.85(2C); 142.16 (4C); 142.13 (2C); 142.07 (2C); $141.65(2 \mathrm{C}) ; 139.79(2 \mathrm{C}) ; 138.37(2 \mathrm{C}) ; 137.11$ (2C); $135.10(2 \mathrm{C}) ; 134.05(2 \mathrm{C}) ; 130.49(2 \mathrm{C})$; 71.09 (C-O); $70.58(\mathrm{C}-\mathrm{O}) ; 69.69\left(2 s p 3-\mathrm{C}^{\text {full }}\right) ; 69.11\left(2 \mathrm{CH}_{2}{ }^{\text {pyrr }}\right) ; 68.29\left(\mathrm{C}^{3,11}\right) ; 67.33\left(2 \mathrm{CH}_{2}{ }^{\text {pyrr }}\right) ; 65.66\left(2 s p 3-\mathrm{C}^{\text {full }}\right) ; 50.06\left(\mathrm{C}^{1,13}\right)$; $28.40 \mathrm{ppm}\left(\mathrm{C}^{2,12}\right)$. HR-MS: m / z calc. for $\left[\mathrm{C}_{74} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}$: 993.21727; measured 993.21515.
Bisadduct 13 (eq): $R_{\mathrm{f}}=0.36$ ($\mathrm{PhMe} / E t O A c ~ 1: 1$); UV/Vis: $\lambda_{\max }(\mathrm{PhMe}) / \mathrm{nm} 319$ ($\left.\varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1} 42000\right)$; 399 (6700); 423 (6100); 456 (5900); 553 (1300); 584 (980); 627 (410); 710 (100). IR(ATR): $\tilde{v} / \mathrm{cm}^{-1} 3048,2947,2870,2804,1677,1474,1345,1235$, $1175,1126,771,738,529$. NMR: $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 4.42\left(d d, J=9.0 ; 1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}^{\text {pyrr-2 }}\right) ; 4.11\left(s, 2 \mathrm{H}, \mathrm{CH}_{2}^{\text {pyrr-1 }}\right)$; $4.04\left(s, 2 H, \mathrm{CH}_{2}{ }^{\text {pyrr-1 }}\right) ; 3.80\left(d d, J=9.0 ; 1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}^{\text {pyrr-2 }}\right) ; 3.81-3.77\left(m, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{3}\right) ; 3.78\left(t, J=6.0 ; 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{11}\right) ; 3.68(d d, J=7.0$;
6.5 Hz; 2H, CH2-O); 3.64-3.61 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}$); $3.53\left(d d, J=7.5 ; 6.0,2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right) ; 3.51-3.48\left(m, 2 \mathrm{H}_{2} \mathrm{CH}_{2}-\mathrm{O}\right) ; 3.10(t, J=6.0 \mathrm{~Hz}$; $2 \mathrm{H}, \mathrm{CH}_{2}{ }^{13}$); $3.08\left(t, J=6.0 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{1}\right.$); 2.04 (quint, $J=6.0 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{12}$), 1.98 (quint, $J=6.0 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{2}$) ppm. $\delta \mathrm{C}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}$) 159.39 (2C); 154.59 (2C); 153.72 (2C); 152.72 (2C); 149.67 (1C); 148.84 (2C); 148.10 (2C); 147.71 (1C); 147.54 (2C); 147.44 (2C); 147.37 (2C); 147.17 (2C); 146.02 (2C); 145.77 (2C); 145.15 (2C); 145.03 (2C); 144.69 (2C); 144.62 (2C); 144.40 (2C); 143.54 (2C); 143.33 (2C); 142.30 (2C); 141.59 (2C); 141.42 (2C); 141.26 (2C); 140.89 (2C); 138.96 (2C); $136.73(2 \mathrm{C}) ; 135.54(2 \mathrm{C}), 70.75\left(2 s p 3-\mathrm{C}^{\text {full(pyr-2) }}\right.$), $70.54(\mathrm{C}-\mathrm{O}), 70.32\left(s p 3-\mathrm{C}^{\text {full(pyrr-1) }}\right.$), $70.27(\mathrm{C}-\mathrm{O}), 69.98\left(s p 3-\mathrm{C}^{\text {full(pyrr-1) }}\right.$), 69.83 $(\mathrm{C}-\mathrm{O}), 69.63(\mathrm{C}-\mathrm{O}), 68.97\left(\mathrm{C}^{3}\right), 68.56\left(\mathrm{C}^{11}\right), 68.24\left(\mathrm{CH}_{2}^{\text {pyr-1 }}\right) ; 67.27\left(2 \mathrm{CH}_{2}^{\text {pyr- }}\right) ; 66.70\left(\mathrm{CH}_{2}{ }^{\text {pyr-1 }}\right) ; 50.75\left(\mathrm{C}^{13}\right) ; 50.22\left(\mathrm{C}^{1}\right) ; 29.22$ $\left(\mathrm{C}^{12}\right) ; 28.47 \mathrm{ppm}\left(\mathrm{C}^{2}\right)$. HR-MS: m / z : calc. for $\left[\mathrm{C}_{74} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}: 993.21727$, measured 993.21577.
1,13-Bis(N-fulleropyrrolidino)-4,7,10-trioxatridecane (14): $R_{\mathrm{f}}=0.73$ ($\mathrm{PhMe} / \mathrm{EtOAc} 1: 1$); UV/Vis: $\lambda_{\max }(\mathrm{PhMe}) / \mathrm{nm} 330\left(\varepsilon / \mathrm{mol}^{-}\right.$ ${ }^{1} \mathrm{dm}^{3} \mathrm{~cm}^{-1} 39000$); 431 (3800); 546 (2100); 610 (1300); 698 (560). IR(KBr): $\tilde{v} / \mathrm{cm}^{-1} 2854,2771,1731,1638,1456,1423,1340$, 1301, 1232, 1108, 1039, 877, 766, 730, 524. NMR: $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CS}_{2}, \mathrm{Me}_{4} \mathrm{Si}\right) 4.41\left(s, 8 \mathrm{H}, \mathrm{CH}_{2}{ }^{\text {pyrr }}\right) ; 3.86(t, J=6.5 \mathrm{~Hz}$, $4 \mathrm{H}, \mathrm{CH}_{2}{ }^{3,11}$); 3.77 (br s, $8 \mathrm{H}, 4 \mathrm{CH}_{2}-\mathrm{O}$); $3.21\left(t, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}{ }^{1,13}\right.$); 2.23 ppm (quint, $J=6.5 \mathrm{~Hz} ; 4 \mathrm{H}, \mathrm{CH}_{2}{ }^{2,12}$). $\delta \mathrm{C}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}+\mathrm{CS}_{2}, \mathrm{Me}_{4} \mathrm{Si}\right): 154.91$ (8C); 147.18 (4C); 146.14 (8C); 145.95 (16C); 145.57 (4C); 145.33 (8C); 145.18 (8C); 144.46 (8C); 143.01 (4C); 142.54 (8C); 142.14 (8 C); 141.97 (8C); 141.79 (8 C); 140.08 (8 C); 136.15 (8 C); 70.80 (2C-O); 70.58 ($4 s p 3$-C $\mathrm{C}^{\text {full }) ; ~}$ $70.50(2 \mathrm{C}-\mathrm{O}) ; 69.31\left(\mathrm{C}^{3,11}\right) ; 67.89\left(4 \mathrm{CH}_{2}{ }^{\text {pyrr }}\right) ; 51.64\left(\mathrm{C}^{1,13}\right) ; 29.12 \mathrm{ppm}\left(\mathrm{C}^{2,12}\right)$. HR-MS: m/z calc. for $\left[\mathrm{C}_{134} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}$: 1713.21727, measured 1713.25252.
4. Table S1. Visible region absorption bands $400-800 \mathrm{~nm}$ of bisadduct isomers.

Regioizomer	$\lambda_{1} / \varepsilon$	$\lambda_{2} / \varepsilon$	$\lambda_{3} / \varepsilon$	$\lambda_{4} / \varepsilon$	$\lambda_{5} / \varepsilon$
$\mathbf{7}$ cis-1	$402 / 7000$	$427 / 6000$	$654 / 200$	$684 / 160$	$722 / 160$
$\mathbf{1 0}$ cis-1	$406 / 7000$	$430 / 5900$	$651 / 170$	$676 / 140$	$710 / 140$
$\mathbf{8}$ cis-2	$448 / 4800$	$487 / 3000$	$572 / 910$	$647 / 430$	$680 / 280$
$\mathbf{1 1}$ cis-2	$448 / 5100$	$483 / 3000$	$578 / 900$	$643 / 420$	$679 / 280$
$\mathbf{9}$ cis-3	$431 / 2900$	$467 / 2000$	$548 / 800$	$657 / 360$	$732 / 280$
$\mathbf{1 2}$ cis-3	$435 / 3900$	$464 / 2600$	$551 / 1400$	$640 / 470$	$729 / 320$
$\mathbf{1 3}$ eq	$423 / 6100$	$456 / 5900$	$553 / 1300$	$627 / 410$	$710 / 100$

5. Table S2 ${ }^{13} \mathrm{C}$ NMR chemical shifts of the fullerene moiety of the bridged bisadducts.

cis-1		cis-2		cis-3		$e q$
$-\mathrm{C}_{6} \mathrm{O}_{2}-$	$-\mathrm{C}_{10} \mathrm{O}_{3}-$	$-\mathrm{C}_{6} \mathrm{O}_{2^{-}}$	$-\mathrm{C}_{10} \mathrm{O}_{3-}$	$-\mathrm{C}_{6} \mathrm{O}_{2^{-}}$	$-\mathrm{C}_{10} \mathrm{O}_{3}-$	$-\mathrm{C}_{10} \mathrm{O}_{3^{-}}$
151.96	151.90	159.83	159.01	153.95	153.49	159.39
151.15	151.06	155.61	156.41	149.64	149.79	154.59
150.58	150.19	149.12	149.27	149.05	149.09	153.72
148.79	148.93	148.80*	148.86*	148.55	148.61	152.72
147.87	148.05	148.72*	148.78*	148.23	148.29	149.67*
147.08	147.24	148.56*	148.27*	148.22	148.08	148.84
146.82	146.99	147.49	147.93	147.77	147.78	148.10
146.20	146.34	147.18	147.64	146.90	147.03	147.71*
145.96	146.09	147.04	147.51	146.59	146.26	147.54
145.92*	145.91*	146.72	147.05	146.23	146.15	147.44
145.37	145.43	146.58	146.89	146.05	146.12	147.37
145.18	145.34	146.23	146.46	145.93	145.98	147.17
144.89	145.00**	146.18	146.11	145.70	145.76	146.02
144.84		146.00	145.71	145.66	145.62	145.77
144.42	144.57	145.74	145.70	145.10	145.18	145.15
144.11	144.22	145.37	145.65	144.91	144.98	145.03
143.88	144.04	145.18	145.34	144.71	144.85	144.69
143.79	143.96	145.08	145.15	142.16	142.16**	144.62
143.59	143.72	144.60	144.83	142.12**		144.40
142.87	143.00	144.57	144.57		142.13	143.54
142.55*	142.69*	144.26	144.43	142.06	142.07	143.33
142.30	142.43	143.94	144.18	141.70	141.65	142.30
142.24*	142.34*	143.81	144.01	139.74	139.79	141.59
142.17	142.30	143.01	142.98	138.21	138.37	141.42
141.82	141.91	141.51	141.63	137.07	137.11	141.26
141.58	141.56	140.71	140.94	135.36	135.10	140.89
140.61	140.77	139.05	138.86	134.64	134.05	138.96
137.85*	137.94*	133.53	133.79	130.26	130.49	136.73
135.08	135.24	132.89	133.05			135.54
134.89	135.06	129.49*	129.18*			

[^3]6. Table S3 ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR chemical shifts of the non-fullerene moiety of the bridged bisadducts.

	$\begin{aligned} & \delta\left(s p^{3}-\right. \\ & \left.\mathrm{C}^{\text {full }}\right) \end{aligned}$	$\delta\left(\mathrm{CH}_{2}{ }^{\text {pyrr }}\right)$	$\delta\left(\mathrm{CH}_{2}{ }^{\text {tether }}\right)$
cis-1 (7)	$\begin{aligned} & 67.59 \\ & 66.16 \end{aligned}$	$\begin{aligned} & 4.80 \mathrm{~d}(10.0) ; 3.52 \mathrm{~d}(10.0) ; 66.06 \\ & 4.47 \mathrm{~d}(8.5) ; 4.01 \mathrm{~d}(8.0) ; 66.42 \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{2}(1,8)-3.11 \operatorname{ddd}(3.0 ; 5.5 ; 14.0) ; 3.38 \operatorname{ddd}(3.0 ; 7.0 ; \\ & 13.5) ; 52.91 \\ & \mathrm{CH}_{2}(2,7)-4.00-3.92 \mathrm{~m} ; 68.63 \\ & \mathrm{CH}_{2}(4,5)-3.88-3.82 \mathrm{~m} ; 3.82-3.76 \mathrm{~m} ; 69.46 \end{aligned}$
cis-2 (8)	$\begin{aligned} & 67.78 \\ & 67.74 \end{aligned}$	$\begin{aligned} & 5.34 \mathrm{dd}(10.0 ; 2.0) ; 3.32 \mathrm{~d}(10.0) ; 68.48 \\ & 4.27 \mathrm{dd}(9.0 ; 2.0) ; 3.64 \mathrm{~d}(9.0) ; 68.50 \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{2}(1,8)-2.83 \operatorname{ddd}(2.0 ; 8.0 ; 13.0) ; 3.52 \operatorname{ddd}(2.5 ; 5.5 ; \\ & 13.0) ; 52.55 \\ & \mathrm{CH}_{2}(2,7)-4.02 \operatorname{ddd}(2.5 ; 8.0 ; 9.5) ; 3.80-3.90 \mathrm{~m} ; 71.88 \\ & \mathrm{CH}_{2}(4,5)-3.80-3.90 \mathrm{~m} ; 70.38 \end{aligned}$
cis-3 (9)	$\begin{aligned} & 70.36 \\ & 66.44 \end{aligned}$	$\begin{aligned} & 4.68 \mathrm{dd}(9.5 ; 2.0) ; 3.49 \mathrm{~d}(9.5) ; 65.72 \\ & 4.47 \mathrm{dd}(9.0 ; 2.0) ; 4.08 \mathrm{~d}(9.0) ; 69.09 \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{2}(1,8)-2.85 \mathrm{dt}(12.5 ; 4.0) ; 3.71 \mathrm{ddd}(12.5 ; 9.5 ; 5.0) ; \\ & 52.28 \\ & \mathrm{CH}_{2}(2,7)-3.83-3.90 \mathrm{~m} ; 69.41 \\ & \mathrm{CH}_{2}(4,5)-3.93-3.90 \mathrm{~m} ; 3.78-3.83 \mathrm{~m} ; 70.87 \end{aligned}$
$c i s-1$ (10)	$\begin{aligned} & 68.10 \\ & 65.73 \end{aligned}$	$\begin{aligned} & \text { 4.28d(9.5); 3.66d(9.5); } 68.46 \\ & 4.26 d(8.5) ; 4.04 d(8.5) ; 66.59 \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{2}(1,13)-3.23 \mathrm{ddd}(7.0 ; 8.0 ; 11.5) ; 2.98 \mathrm{ddd}(5.5 ; 8.5 ; \\ & 12.0) ; 52.47 \\ & \mathrm{CH}_{2}(2,12)-2.07-2.23 \mathrm{~m} ; 28.87 \\ & \mathrm{CH}_{2}(3,11)-3.98 \mathrm{ddd}(5.0 ; 8.0 ; 10.0) ; 3.76-3.86 \mathrm{~m} ; \\ & 69.34 \\ & \mathrm{CH}_{2}-\mathrm{O}-3.76-3.86 \mathrm{~m} ; 70.91 \\ & \mathrm{CH}_{2}-\mathrm{O}-3.76-3.86 \mathrm{~m} ; 70.22 \end{aligned}$
cis-2 (11)	$\begin{aligned} & 67.35 \\ & 67.07 \end{aligned}$	$\begin{aligned} & 4.01 \mathrm{~d}(9.0) ; 3.96 \mathrm{~d}(9.0) ; 67.43 \\ & 3.93 \mathrm{~d}(9.5) ; 3.81 \mathrm{~d}(9.5) ; 68.22 \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{2}(1,13)-2.90 \mathrm{dt}(12.0 ; 6.0) ; 3.16 \mathrm{dt}(12.0 ; 7.0) ; \\ & 50.96 \\ & \mathrm{CH}_{2}(2,12)-2.07 \text { quint }(5.5) ; 28.69 \\ & \mathrm{CH}_{2}(3,11)-3.75-3.83 \mathrm{~m} ; 68.76 \\ & \mathrm{CH}_{2}-\mathrm{O}-3.70-3.81 \mathrm{~m} ; 70.58 \\ & \mathrm{CH}_{2}-\mathrm{O}-3.67-3.72 \mathrm{~m} ; 70.69 \end{aligned}$
$c i s-3$ (12)	$\begin{aligned} & 69.69 \\ & 65.66 \end{aligned}$	$\begin{aligned} & 4.36 \operatorname{dd}(9.0 ; 1.5) ; 3.78 \mathrm{~d}(9.0) ; 67.33 \\ & 4.28 \operatorname{dd}(9.5 ; 1.5) ; 3.61 \mathrm{~d}(9.5) ; 69.11 \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{2}(1,13)-2.81 \mathrm{dt}(12.0 ; 6.0) ; 3.25 \mathrm{dt}(12.0 ; 7.0) ; \\ & 50.06 \\ & \mathrm{CH}_{2}(2,12)-1.99-2.11 \mathrm{~m} ; 28.40 \\ & \mathrm{CH}_{2}(3,11)-3.84-3.90 \mathrm{~m} ; 3.70 \mathrm{dt}(10 ; 5.5) ; 68.29 \\ & \mathrm{CH}_{2}-\mathrm{O}-3.77-3.85 \mathrm{~m} ; 70.58 \\ & \mathrm{CH}_{2}-\mathrm{O}-3.75-3.81 \mathrm{~m} ; 71.09 \end{aligned}$
$e q(13)$	$\begin{aligned} & 70.75(2 \mathrm{C}) \\ & 70.32(1 \mathrm{C}) \\ & 69.98(1 \mathrm{C}) \end{aligned}$	$\begin{aligned} & \text { 4.42dd(9.0; 1.0); 3.80dd(9.0; 1.0); } \\ & 67.27 \\ & \text { 4.11s; } 68.24 ; \\ & 4.04 \mathrm{~s} ; 66.70 \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{2}(1)-3.08 \mathrm{t}(6.0), 50.22 ; \mathrm{CH}_{2}(13)-3.10 \mathrm{t}(6.0), 50.75 \\ & \mathrm{CH}_{2}(2)-1.98 q u i n t(6.0), 28.47 ; \mathrm{CH}_{2}(12)-2.04 q u i n t \\ & (6.0), 29.22 \\ & \mathrm{CH}_{2}(3)-3.81-3.77 \mathrm{~m} ; 68.97 ; \mathrm{CH}_{2}(11)-3.78 \mathrm{t}(6.0), \\ & 68.56 \\ & \mathrm{CH}_{2}-\mathrm{O}-3.64-3.61 \mathrm{~m} ; 70.54 ; \mathrm{CH}_{2}-\mathrm{O}-3.51-3.48 \mathrm{~m} ; \\ & 70.27 \\ & \mathrm{CH}_{2}-\mathrm{O}-3.53 \mathrm{dd}(7.5 ; 6.0) ; 69.83 ; \mathrm{CH}_{2}-\mathrm{O}-3.68 \mathrm{dd}(7.0 ; \\ & 6.5) ; 69.63 \end{aligned}$
Bis-C C_{6} (14)	70.58	4.41s; 67.89	$\begin{aligned} & \mathrm{CH}_{2}(1,13)-3.21 \mathrm{t}(7.0) ; 51.64 \\ & \mathrm{CH}_{2}(2,12)-2.23 q u i n t(6.5) ; 29.12 \\ & \mathrm{CH}_{2}(3,11)-3.86 \mathrm{t}(6.5) ; 69.31 \\ & \mathrm{CH}_{2}-\mathrm{O}-3.77 \mathrm{br} s ; 70.80,70.50 \end{aligned}$
δ range	65-71	$\begin{aligned} & 3.30-5.40 \\ & 65-69 \end{aligned}$	$\begin{array}{ll} \text { Dioxa-C10: } & \mathrm{CH}_{2}(1) \rightarrow 52.28-52.91 \\ & \mathrm{CH}_{2}(2) \rightarrow 68.63-71.88 \\ & \mathrm{CH}_{2}(4) \rightarrow 69.46-70.71 \\ \text { Trioxa-C13: } & \mathrm{CH}_{2}(1) \rightarrow 50.06-52.47 \\ & \mathrm{CH}_{2}(2) \rightarrow 28.40-29.22 \\ & \mathrm{CH}_{2}(3) \rightarrow 68.29-69.34 \\ & \mathrm{CH}_{2}(5,6) \rightarrow 69-71 \end{array}$

Fig.S1 ${ }^{1} \mathrm{H}$ NMR spectrum of compound 3

86-5
$\stackrel{\otimes}{\square}$
$\stackrel{\stackrel{g}{4}}{\substack{4 \\ \stackrel{m}{i}}}$

Fig.S2 ${ }^{13} \mathrm{C}$ NMR spectrum of compound 3

One or more scans have failed IRM. Review the data file for details.

Merged XIC, Period\# : 1 Experiment\#: 1

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C24H32N2O6	-	444.22604	0.38	$2.79088 \mathrm{E7}$	-

Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
$[\mathrm{M}+\mathrm{H}]+$	569759.42	445.23331	445.23183	-1.48025	-3.32	-
$[\mathrm{M}+\mathrm{Na}]+$	139967.85	467.21526	467.21342	-1.84058	-3.94	-

Fig. S3 HR-MS spectrum of compound $\mathbf{3}$

Fig.S4 ${ }^{1} \mathrm{H}$ NMR spectrum of compound 4

Fig.S5 ${ }^{13} \mathrm{C}$ NMR spectrum of compound 4

One or more scans have failed IRM. Review the data file for details.

Merged XIC, Period\# : 1 Experiment\#: 1

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C28H40N2O7	-	516.28355	0.38	6.32908 E 7	--

Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
$[\mathrm{M}+2 \mathrm{H}] 2+$	1428936.78	259.14905	259.14980	0.75157	2.90	-
$[\mathrm{M}+\mathrm{H}]+$	430308.58	517.29083	517.29112	0.28791	0.56	-
$[\mathrm{M}+\mathrm{Na}]+$	33890.98	539.27277	539.27333	0.55252	1.02	-

Fig. S6 HR-MS spectrum of compound 4

Fig.S7 ${ }^{1} \mathrm{H}$ NMR spectrum of compound 5
92

$\stackrel{m}{9}$
部会

Fig.S8 ${ }^{13} \mathrm{C}$ NMR spectrum of compound 5

Sample Name: TKN92 Sample Location: P1-B9 Sample Id: Operator: Milka
Data File Name: D:IPE Sciex DatalProjectsID_MilicIDataITKN92mk_MK70V_pos2.wiff Acq Time: April 09 2012, 04:49:56 PM Method: D:ITOF_DataldamethodsiNight_Seq_Comp_ident1.anmlefc.xmI

One or more scans have failed IRM. Review the data file for details.

Merged XIC, Period\# : 1 Experiment\#: 1

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C10H20N2O6	-	264.13214	0.37	1.46081 E 8	-

Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
$[\mathrm{M}+\mathrm{H}]+$	2082262.46	265.13941	265.13866	-0.75030	-2.83	--
$[\mathrm{M}+\mathrm{Na}]+$	114103.32	287.12136	287.11965	-1.70249	-5.93	--

Fig. S9 HR-MS spectrum of compound 5

Fig.S10 ${ }^{1} \mathrm{H}$ NMR spectrum of compound 6
88
$\stackrel{\text { १ึ }}{\text { १ }}$

-2723

Fig.S11 ${ }^{13} \mathrm{C}$ NMR spectrum of compound 6

One or more scans have failed IRM. Review the data file for details.

Merged XIC, Period\# : 1 Experiment\# : 1

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C 14 H 28 N 2 O 7	-	336.18965	0.40	1.91919 E 8	-

Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
$[\mathrm{M}+2 \mathrm{H}] 2+$	1245594.51	169.10210	169.10168	-0.42034	-2.49	-
$[\mathrm{M}+\mathrm{H}]+$	591544.29	337.19693	337.19538	-1.54941	-4.59	-
$[\mathrm{M}+\mathrm{Na}]+$	57682.29	359.17887	359.17724	-1.63500	-4.55	-

Fig S12 HR-MS spectrum of compound 6

Fig. S13 ${ }^{1}$ H NMR spectrum of compound 7

,	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	
160	150	140	130	120	110	100	90	$\begin{array}{r} 80 \\ \mathrm{f} 1(\mathrm{ppm}) \end{array}$	70	60	50	40	30	20	10	0

Fig.S14 ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7

Fig S15 COSY spectrum of compound 7

Fig S16 HSQC spectrum of compound 7

Sample Name: TKN-94-C1 Sample Location: P1-C1 Sample Id: Operator: Milka
Data File Name: D:IPE Sciex DatalProjectsID_MilicIDatalTKN-94-C1_MK200V_pos4.wiff Acq Time: July 28 2015, 10:54:37 AM
Method: d:ITOF_DataldamethodsINight_Seq_Comp_ident1.anmlefc.xml

Merged XIC, Period\# : 1 Experiment\# : 1

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C 70 H 20 N 2 O 2	-	920.15248	1.50	5.70343 E 5	-

Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
$[\mathrm{M}+2 \mathrm{H}] 2+$	21142.04	461.08352	461.08192	-1.59089	-3.45	-
$\mathrm{M}+$	1640.21	920.15193	920.14423	-7.70308	-8.37	-
$[\mathrm{M}+\mathrm{H}]+$	61804.07	921.15975	921.15538	-4.36965	-4.74	-
$[\mathrm{M}+\mathrm{NH} 4]++$	1902.36	938.18830	938.15406	-32.23965	-34.36	-
$[\mathrm{M}+\mathrm{Na}]^{+}$	7683.76	943.14170	943.13855	-3.14719	-3.34	-

Fig. S17 HR-MS spectrum of compound 7

Fig.S18 ${ }^{1}$ H NMR spectrum of compound 8

Fig.S19 ${ }^{13} \mathrm{C}$ NMR spectrum of compound 8

Fig. S20 COSY spectrum of compound $\mathbf{8}$

Fig. S21 HSQC spectrum of compound 8

One or more scans have failed IRM. Review the data file for details.

Merged XIC, Period\# : 1 Experiment\#: 1

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C 70 H 20 N 2 O 2	-	920.15248	0.35	1.00097 E 6	-

Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
$[\mathrm{M}+\mathrm{H}]^{+}$	188342.12	921.15975	921.16010	0.34509	0.37	--
$[\mathrm{M}+\mathrm{NH} 4]^{+}$	8444.71	938.18630	938.15891	-27.39731	-29.20	--

Fig. S22 HR-MS spectrum of compound 8

Fig.S23 ${ }^{1} \mathrm{H}$ NMR spectrum of compound 9

Fig.S24 ${ }^{13} \mathrm{C}$ NMR spectrum of compound 9

Fig. S25 COSY spectrum of compound 9

Fig. S26 HSQC spectrum of compound 9

One or more scans have failed IRM. Review the data file for details.

Merged XIC, Period\# : 1 Experiment\# : 1

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C 70 H 20 N 2 O 2	-	920.15248	0.37	2.86071 E 6	-

Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
$[\mathrm{M}+2 \mathrm{H}] 2+$	14217.34	461.08352	461.08479	1.27093	2.76	
$[\mathrm{M}+\mathrm{H}]+$	321713.99	921.15975	921.15997	0.22049	0.24	
$[\mathrm{M}+\mathrm{NH} 4]^{+}$	5088.87	938.18630	938.16024	-26.06655	-27.78	

Fig. S27 HR-MS spectrum of compound $\mathbf{9}$

Fig.S28 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 0}$

Fig.S29 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 0}$

Fig. S30 COSY spectrum of compound 10

Fig. S31 HSQC spectrum of compound 10

Sample Name: TKN-97-C1 Sample Location: P1-C3 Sample Id: Operator: Milka
Data File Name: D:IPE Sciex DatalProjectsID_MilicIDatalTKN-97-C1_MK200V_pos1.wiff Acq Time: July 28 2015, 10:19:53 AM
Method: d:ITOF_DataldamethodsINight_Seq_Comp_ident1.anmlefc.xml

Merged XIC, Period\# : 1 Experiment\# : 1

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C 74 H 28 N 2 O 3	--	992.20999	0.37	1.34865 E 7	-

Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
M^{+}	36030.60	992.20944	992.20436	-5.08845	-5.13	--
$[\mathrm{M}+\mathrm{H}]+$	1671238.55	993.21727	993.21561	-1.66295	-1.67	-
$[\mathrm{M}+\mathrm{NH} 4]^{+}$	63146.49	1010.24382	1010.21360	-30.22208	-29.92	-

Fig. S32 HR-MS spectrum of compound 10

(1)

,	,					1	,	,		,	,	1		
7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

Fig.S33 ${ }^{1} \mathrm{H}$ NMR spectrum of compound 11

1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	
160	150	140	130	120	110	100	90	$\begin{gathered} 80 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	70	60	50	40	30	20	10	0

Fig.S34 ${ }^{13} \mathrm{C}$ NMR spectrum of compound 11

Fig. S35 COSY spectrum of compound 11

Fig. S36 HSQC spectrum of compound 11

Sample Name: TKN97-31 Sample Location: P1-C4 Sample Id: Operator: Milka
Data File Name: D:IPE Sciex DatalProjectsID_MilicIDatalTKN97_31_MK70V_pos1.wiff Acq Time: April 27 2012, 11:14:17 AM Method: D:ITOF_DataldamethodsINight_Seq_Comp_ident1.anmlefc.xml

One or more scans have failed IRM. Review the data file for details

Merged XIC, Period\# : 1 Experiment\#: 1

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C 74 H 28 N 2 O 3	--	992.20999	0.35	6.50638 E 6	--

Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time.Error (min)
$[\mathrm{M}+2 \mathrm{H}] 2+$	437569.35	497.11227	497.11101	-1.26153	-2.54	-
$[\mathrm{M}+\mathrm{H}]+$	1770072.97	993.21727	993.21682	-0.44446	-0.45	-
$[\mathrm{M}+\mathrm{NH} 4]+$	30115.51	1010.24382	1010.21427	-29.55150	-29.25	--

Fig. S37 HR-MS spectrum of compound 11

Fig.S38 ${ }^{1} \mathrm{H}$ NMR spectrum of compound 12

Fig.S39 ${ }^{13} \mathrm{C}$ NMR spectrum of compound 12

Fig. S40 COSY spectrum of compound 12

Fig. S41 HSQC spectrum of compound 12

Sample Name: TKN-97-C3 Sample Location: P1-C4 Sample Id: Operator: Milka
Data File Name: D:IPE Sciex DatalProjectsID MilicIDatalTKN-97-C3_MK200V_pos1.wiff Acq Time: July 28 2015, 10:23:04 AM
Method: d:ITOF_DataldamethodsINight_Seq_Comp_ident1.anmlefc.xmI

Merged XIC, Period\# : 1 Experiment\#: 1

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C 74 H 28 N 2 O 3	-	992.20999	0.40	6.01842 E 6	-

Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
$[\mathrm{M}+2 \mathrm{H}] 2^{+}$	27465.42	497.11227	497.11162	-0.64813	-1.30	--
$[\mathrm{M}+\mathrm{H}]+$	411826.29	993.21727	993.21515	-2.12087	-2.14	--
$[\mathrm{M}+\mathrm{NH} 4]++$	37755.98	1010.24382	1010.21458	-29.23997	-28.94	-

Fig. S42 HR-MS spectrum of compound 12

Fig.S43 ${ }^{1} \mathrm{H}$ NMR spectrum of compound 13

	1	1		I	1	1	,	1		1	1	1	1	1	1	1	
170	160	150	140	130	120	110	100	90	$\begin{array}{r} 80 \\ \mathrm{f} 1(\mathrm{ppm}) \end{array}$	70	60	50	40	30	20	10	0

Fig.S44 ${ }^{13} \mathrm{C}$ NMR spectrum of compound 13

Fig. S44 COSY spectrum of compound 13

Fig. S45 HSQC spectrum of compound 13

Merged XIC, Period\# : 1 Experiment\#: 1

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C 74 H 28 N 2 O 3	-	992.20999	0.39	9.92219 E 6	-

Species	Abundance (counts)	lon Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
$[\mathrm{M}+2 \mathrm{H}] 2+$	277699.62	497.11227	497.11116	-1.11351	-2.24	
$[\mathrm{M}+\mathrm{H}]+$	1587182.96	993.21727	993.21577	-1.49781	-1.51	
$[\mathrm{M}+\mathrm{NH} 4]+$	92095.94	1010.24382	1010.21498	-28.83545	-28.54	-

Fig. S46 HR-MS spectrum of compound 13

Fig.S47 ${ }^{1} \mathrm{H}$ NMR spectrum of compound 14

Fig.S48 ${ }^{13} \mathrm{C}$ NMR spectrum of compound 14

Fig. S49 COSY spectrum of compound 14

Fig. S50 HSQC spectrum of compound 14

Sample Name: TKN97-6 Sample Location: Vial 4 Sample Id: Operator: Milka
Data File Name: D:IPE Sciex DatalProjectsID MiliclDatalTKN97-6_MK70V_pos3.wiff Acq Time: July 19 2012, 02:04:41 PM Method: d:ITOF SoftwareldamethodsiNight_Seq_Comp_ident1.anmlefc.xml

One or more scans have failed IRM. Review the data file for details.

Merged XIC, Period\# : 1 Experiment\#: 1

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C 134 H 28 N 2 O 3	--	1712.20999	0.42	1.22436 E 5	-

Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
$[\mathrm{M}+\mathrm{H}]+$	26096.15	1713.21727	1713.25252	35.24829	20.57	

Fig. S51 HR-MS spectrum of compound 14

Fig. S52. Representative SEM images of samples prepared from 0.5 mM solution of three regioisomeric bisadducts with the dioxaoctane bridge in A) ODCB; B) $\mathrm{PhMe} ; \mathbf{C}$) $\mathrm{PhMe} / \mathrm{iPrOH} 1: 1$; D) PhMe/dioksan 1:1 and E) CHCl_{3}, on glass substrate at room temperature.

Fig. S53 Representative SEM images of samples prepared from 0.5 mM solutions of regioisomeric bisadducts with the trioxatridecane bridge in A) ODCB; B) $\mathrm{PhMe} ; \mathbf{C}$) $\mathrm{PhMe} / i-\mathrm{PrOH} 1: 1$; D) $\mathrm{PhMe} /$ dioxane $1: 1$, and \mathbf{E}) CHCl_{3} on glass substrate at room temperature.

Fig. S54: CVs of compounds 7-19 in ODCB/DMF 2:1, with $0,1 \mathrm{M} \mathrm{TBAP}$ as a supporting electrolyte, recorded at the scanning rate of $0.7 \mathrm{~V} / \mathrm{s}$, at the room temperature, under the argon atmosphere.

Fig. S55: CVs of compounds 7-13 in DCM, with 0,1 M TBAP as a supporting electrolyte, recorded at the scanning rate of $0.7 \mathrm{~V} / \mathrm{s}$, at the room temperature under the argon atmosphere.

winCATS Planar Chromatography Manager

Track 1, ID:

Fig. S56. HPTLC of bisadduct 7.

Track 1, ID:

Spectrum scan \quad Thursday, October 15, 2015 11:18:15 AM

Executed by

Slit dimensions
Optimize optical system
Scanning speed
Data resolution
Reference spectrum, pos X
Reference spectrum, pos Y

Zivoslav Tesic All detected peaks $6.00 \times 0.30 \mathrm{~mm}$, Micro Resolution $100 \mathrm{~nm} / \mathrm{s}$
$10 \mathrm{~nm} /$ step
10.0 mm
10.0 mm

Fig. S57. HPTLC of bisadduct 8.

Track 1, ID:

Spectrum scan	Thursday, October 15,2015 1:31:20 PM
Executed by	Zivoslav Tesic
Mode	All detected peaks
Slit dimensions	$6.00 \times 0.30 \mathrm{~mm}$, Micro
Optimize optical system	Resolution
Scanning speed	$100 \mathrm{~nm} / \mathrm{s}$
Data resolution	$10 \mathrm{~nm} / \mathrm{step}$
Reference spectrum, pos X	10.0 mm
Reference spectrum, pos Y	10.0 mm

94 C3 on all Tracks

Fig. S58. HPTLC of bisadduct 9.

Track 1, ID:

Spectrum scan
Friday, October 16, 2015 10:48:33 AM

Executed by Mode
Slit dimensions
Optimize optical system
Scanning speed
Data resolution
Reference spectrum, pos X
Reference spectrum, pos Y

Zivoslav Tesic
All detected peaks
$6.00 \times 0.30 \mathrm{~mm}$, Micro
Resolution
$100 \mathrm{~nm} / \mathrm{s}$
$10 \mathrm{~nm} /$ step
10.0 mm
10.0 mm

97 C1 on all Tracks

Fig. S59. HPTLC of bisadduct 10.

winCATS Planar Chromatography Manager

Track 1, ID:

Peak	Start Rf	Start Height	Max Rf	Max Height	Max \%	End Rf	End Height	Area	Area \%	Assigned substance
1 m	0.22	19.5	0.23	25.2	9.29	0.24	18.9	156.7	2.44	unknown *
2 m	0.25	16.4	0.26	16.4	6.03	0.25	13.3	107.1	1.67	unknown *
3 m	0.28	9.6	0.41	230.1	84.67	0.57	1.9	6158.4	95.89	97 C 2

Spectrum scan Friday, October 16, 2015 12:36:01 PM

Executed by Mode
Slit dimensions
Optimize optical system
Scanning speed
Data resolution
Reference spectrum, pos X
Reference spectrum, pos Y

Zivoslav Tesic
All detected peaks
$6.00 \times 0.30 \mathrm{~mm}$, Micro
Resolution
$100 \mathrm{~nm} / \mathrm{s}$
$10 \mathrm{~nm} / \mathrm{step}$
10.0 mm
10.0 mm

Fig. S60. HPTLC of bisadduct 11.

winCATS Planar Chromatography Manager

Track 1, ID:

	Start	Start Reight	Max Rf	Max Height	Max \%	End Rf	End Height	Area	Area $\%$	Assigned substance
1 m	0.42	5.3	0.47	79.9	100.00	0.51	14.9	1647.5	100.00	$97 \mathrm{C3}$

Spectrum scan
Thursday, October 15, 2015 2:15:26 PM

Executed by	Zivoslav Tesic
Mode	All detected peaks
Slit dimensions	$6.00 \times 0.30 \mathrm{~mm}$, Micro
Optimize optical system	Resolution
Scanning speed	$100 \mathrm{~nm} / \mathrm{s}$
Data resolution	$10 \mathrm{~nm} / \mathrm{step}$
Reference spectrum, pos X	10.0 mm
Reference spectrum, pos Y	10.0 mm

Fig. S61. HPTLC of bisadduct 12.

Track 1, ID:

Spectrum scan Thursday, October 15, 2015 1:53:33 PM

Executed by
Mode
Slit dimensions
Optimize optical system
Scanning speed
Data resolution
Reference spectrum, pos X
Reference spectrum, pos Y

Zivoslav Tesic
All detected peaks
$6.00 \times 0.30 \mathrm{~mm}$, Micro
Resolution
$100 \mathrm{~nm} / \mathrm{s}$
$10 \mathrm{~nm} /$ step
10.0 mm
10.0 mm

97 EQ on all Tracks

$$
\frac{\mathrm{T}}{1} \begin{gathered}
\text { Rf } \\
0
\end{gathered}
$$

Max. @
283 nm

Fig. S62. HPTLC of bisadduct 13.

winCATS Planar Chromatography Manager

Track 1, ID:

Peak	Start Rf	Start Height	Max Rf	Max Height	$\begin{gathered} \text { Max } \\ \% \\ \hline \end{gathered}$	End Rf	End Height	Area	Area \%	Assigned substance
1	0.83	12.6	0.92	157.5	100.00	0.98	0.7	3649.4	100.00	976

Spectrum scan

Friday, October 16, 2015 1:16:29 PM
Executed by Mode
Slit dimensions
Optimize optical system
Scanning speed
Data resolution
Reference spectrum, pos X
Reference spectrum, pos Y

Zivoslav Tesic All detected peaks
$6.00 \times 0.30 \mathrm{~mm}$, Micro
Resolution
$100 \mathrm{~nm} / \mathrm{s}$
$10 \mathrm{~nm} /$ step
10.0 mm
10.0 mm

976 on all Tracks

\mathbf{T}	Rf	Substance	Max. @
	0.92 Rf 976	271 nm	

Fig. S63. HPTLC of bisadduct 14.

[^0]: ${ }^{1}$ M. B. Lens, E. De Marni, R. Gullo,U. Citernesi and R. Crippa, WO 043074 A1, 2007.

[^1]: ${ }^{2}$ S. Gao, M. Miller, X. Q. Han, EP 1593685 A1, 2005.

[^2]: ${ }^{3}$ T. Kop , M. Bjelaković and D. Milić, Tetrahedron, 2015, 71, 4801-4809.

[^3]: * Carbon peaks of relative intensity 1 .
 ${ }^{* *}$ Carbon peaks of relative intensity 4 (the others of relative intensity 2).

