Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information (ESI+)

Cetyl alcohol mediated fabrication of forest of Ag/Mn₃O₄ nanowhiskers catalyst for the selective oxidation of styrene with molecular oxygen

Shankha Shubhra Acharyya, Shilpi Ghosh, Sachin Kumar Sharma and Rajaram Bal*

Catalytic Conversion & Processes Division, CSIR-Indian Institute of Petroleum, Dehradun-

248005, India

*Corresponding author. Tel.: +91 135 2525797; Fax: +91 135 2660202

E-mail addresses: raja@iip.res.in

Fig. S1 SEM-EDAX of uncalcined Ag/Mn $_3O_4$ nanowhiskers catalyst.

Fig. S2 TEM-SAED (based on 6c, main) Ag/Mn $_3O_4$ nanowhiskers catalyst.

Fig. S3 TEM images of Ag-Mn composite catalyst: (a) without cetyl alcohol, aging time (b) 3h, (c) 8h and (d) 24 h.

Fig. S4 SEM image of Ag-Mn composite catalyst prepared in impregnation process.

Fig. S5 TEM image of Ag/Mn $_3O_4$ nanowhiskers catalyst with Ag loading 11.7 %.

Table S1. Comparative studies on styrene oxidation to styrene oxide

Entry	Catalyst	Oxidant	Reaction Conditions	Conversion	Selectivity	Reference
1.	Schiff base tridentate ligand PS- [Hfsal-aepy],anchored ligand based metal complexes PS[Cu(Hfsal- aepy)Cl	TBHP + O ₂	85 °C/6h	70.0	14.9	1
2.	Au particles with size of 20–150 nm were formed on amino-modified porous polydivinylbenzene	02	100 °C/15 h	27.0	30.0	2
3.	Sphere-shaped nanosized polyoxomolybdate {Mo}132	02	25 °C/3h	94.89	98	3
4.	CeO ₂ Nano Wires	02	120 °C/5 h	96%	69%	4
5.	Hollow Silver Nanoparticle Cages Assembled with Silver Nanoparticles	ТВНР	65 °C/4 h.	81.7	79.6	5
6.	Ga ₂ O ₃ Nano Rods	H ₂ O ₂	80 °C/ 4 h	34.5	58	6
7.	Ultrathin copper oxide (CuO) nanorods	ТВНР	75 °C/10 h.	98	77	7
8.	Hierarchical mesoporous vanadiumsilicate-1	ТВНР	100 °C/12 h	49%	54%	8
9.	6V-MCM-48	H ₂ O ₂	30 °C/12 h	44.1	1.1	9
10.	1 wt% In/TiO ₂	O ₂	150 °C/ 8 h	52	82	10
11.	0.98% CeO ₂ -SiO ₂	H ₂ O ₂	50 °C / 6h	72.1	82.1	11
12.	Ag–WO₃Nanorods	H ₂ O ₂	75 °C/12 h	75%	55%	12
13.	Ag-Mn ₃ O ₄ Nanorods	02	80 °C/25 h	67	100	Present Work

References

- 1 S. Sharma, S. Sinha and S. Chand, Ind. Eng. Chem. Res., 2012, 51, 8806–8814.
- 2 L. Wang, B. Zhang, W. Zhang, J. Zhang, X. Gao, X. Meng, D. S. Su and F. S. Xiao, *Chem. Commun.*, 2013, **49**, 3449-3451.
- 3 A. Rezaeifard, R. Haddad, M. Jafarpour and M. Hakimi, *J. Am. Chem. Soc.*, 2013, **135**, 10036-10039.
- 4 P. Pal, S. K. Pahari, A. Sinhamahapatra, M. Jayachandran, G. V. M. Kiruthika, H. C. Bajaj and A. B. Panda, *RSC Adv.*, 2013, **3**, 10837–10847.
- 5 S. Anandhakumar, M. Sasidharan, C. W. Tsao and A. M. Raichur, ACS Appl. Mater. Interfaces, 2014, 6, 3275-3281.
- 6 W. Lueangchaichaweng, N. R. Brooks, S. Fiorilli, E. Gobechiya, K. Lin, L. Li, S. Parres-Esclapez, E. Javon, S. Bals, G. V. Tendeloo, J. A. Martens, C. E. A. Kirschhock, P. A. Jacobs, and P. P. Pescarmona, *Angew. Chem.*, 2014, **53**, 1585–1589.
- 7 W. Jia, Y. Liu, P. Hu, R. Yu, Y. Wang, L. Ma, D. Wang and Y. Li, *Chem. Commun.*, 2015, 51, 8817-8820.
- 8 B. Singh and A. K. Sinha, J. Mater. Chem. A, 2014, 2, 1930–1939.
- 9 H. Wang, W. Qian, J. Chen, Y. Wu, X. Xu, J. Wang and Y. Kong, RSC Adv., 2014, 4, 50832–50839.
- 10V. Amoli, S. Farooqui, A. Rai, C. Santra, S. Rahman, A. K. Sinha and B. Chowdhury, *RSC Adv.*, 2015, **5**, 67089–67092.
- 11B. Sarkar, R. K. Singha, R. Tiwari, S. Ghosh, S. S. Acharyya, C. Pendem, L. N. S. Konathala and R. Bal, *RSC Adv.*, 2014, **4**, 5453–5456.
- 12 S. Ghosh, S. S. Acharyya, M. Kumar and R. Bal, RSC Adv., 2015, 5, 37610-37616.