Supporting Information

Scalable Synthesis of Li_{1.2}Mn_{0.54}Ni_{0.13}Co_{0.13}O₂/LiNi_{0.5}Mn_{1.5}O₄ Sphere Composites as Stable and High Capacity Cathode for Li-Ion Batteries

Huaqi Yin,^a Shaomin Ji,^{*a} Mingzhe Gu,^a Liguo Zhang,^a and Jun Liu^{*a,b}

^aKey Laboratory of Low Dimensional Materials & Application Technology, Ministry

of Education, School of Materials Science and Engineering, Xiangtan University,

Xiangtan 411105, China, email: smji@xtu.edu.cn

^bKey Laboratory of Advanced Energy Storage Materials of Guangdong Province,

School of Materials Science and Engineering, South China University of Technology,

Guangzhou 510641, China, email: msjliu@scut.edu.cn or jliu@xtu.edu.cn

Table S1. Lattice parameters of the pristine $Li_{1.2}Mn_{0.54}Ni_{0.13}Co_{0.13}O_2$ microspheresand the coated $Li_{1.2}Mn_{0.54}Ni_{0.13}Co_{0.13}O_2$ @LiNi $_{0.5}Mn_{1.5}O_4$ microspheres.

Composition	a(Å)	c(Å)	c/a	Vol(Å ³)	R_{wp}	FWHM(003)
Pristine	2.8621(5)	14.2229(5)	4.9689	100.9(1)	9.2	0.201
Coated	2.8537(7)	14.2622(7)	4.9976	100.5(9)	10.7	0.162

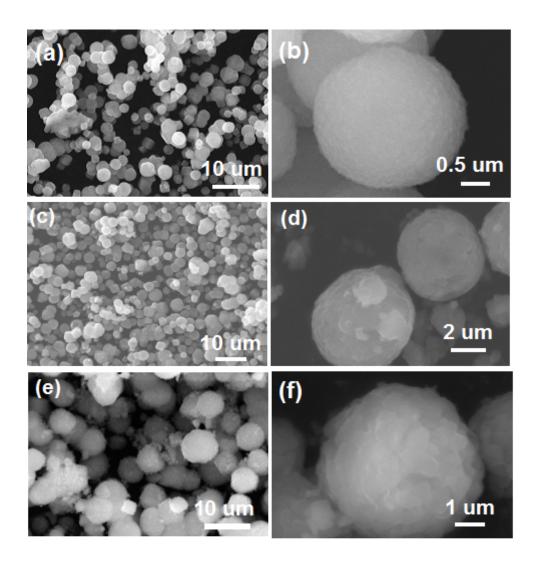


Fig. 1 Low- (a,c,e) and high-magnification (b,d,f) SEM images of $Mn_{0.54}Ni_{0.13}Co_{0.13}(CO_3)_{0.8}$ precursor microspheres (a,b), uncoated Li-rich $Li_{1.2}Mn_{0.54}Ni_{0.13}Co_{0.13}O_2$ cathode microspheres (c,d), and coated Li-rich $Li_{1.2}Mn_{0.54}Ni_{0.13}Co_{0.13}O_2/LiMn_{1.5}Ni_{0.5}O_4$ cathode microspheres (e,f).

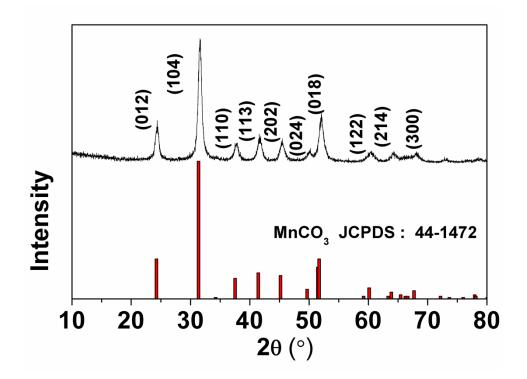


Fig. 2 XRD patterns of the carbonate precursor of $Mn_{0.54}Co_{0.13}Ni_{0.13}(CO_3)_{0.8}$, which are well consistent with the MnCO₃ standard PDF card (JCPDS: 44-1472).