Supporting information for

Three Dimensional Nanowall of Calcein/Layered Double Hydroxide:

Towards Electrogenerated Chemiluminescence Sensor

Wenying Shi,^{a,}* Liqian Bai, Jian Guo, Yufei Zhao^b

^aState Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical

Technology, Beijing 100029, P. R. China

^bKey Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute

of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

Experimental section

1.1 Preparation of the parallel Calcein/LDH film

The Mg₂Al-NO₃ LDH precursor was synthesized by the hydrothermal method reported previously. Subsequently, the Calcein intercalated LDH composites were prepared following the ion-exchange method. Calcein (*a* mol) were dissolved in 150 mL of water, in which x = a/n(AI) = 0.1%, 1.25%, 10%, and 100%, respectively. This solution was adjusted to pH=7.0 with a NaOH (0.2 mol/L) solution. Then freshly prepared Mg₂Al-NO₃ LDH (0.5 g) was dispersed in the solution thoroughly. The suspension was adjusted to pH=7.0 and stirred at room temperature under N₂ atmosphere for 48 h. The product Calcein/LDH (*x*%) was washed extensively with water.

1.2 Fabrication of the parallel Calcein/LDH (x%) films

The parallel films of Calcein/LDH (x%) were fabricated by solvent evaporation method. Substrates of ITO wafer were firstly cleaned by immersing in a bath of deionized water in an ultrasonic bath for 30 min. Pasty Calcein/LDH (x%) (0.05 g) was suspended in 20 mL of water under N₂ atmosphere in an ultrasonic bath (99 W, 28 kHz) at room temperature for 5 min. Then, the resulting Calcein/LDH (x%) suspension was dropped on quartz and ITO substrates and dried in vacuum at ambient temperature for 5 h.

Figure S1. Top-view SEM images of the Calcein/LDH nanowall film under high-magnification.

Figure S2. XRD patterns of (a) ITO substrate, (b) the MgAl-CO₃-LDHs film, and (c) the MgAl-CO₃-LDHs powder scraped from the film.

Figure S3. ECL spectra of the Calcein/LDH film and Calcein adsorbed LDH film.

Figure S4. (A) The photoemission spectra of the parallel Calcein/LDH (x%) film for (a)~(d) x = 0.1%, 1.25%, 10%, and 100%, respectively and (e) pristine Calcein in solution with the excitation wavelength of 490 nm.

Figure S5. (A) and (B) Emission spectra of the Calcein/LDH nanowall film at different pH values (295 K, λ_{ex} =498 nm); (C) pH titration curve for the Calcein/LDH nanowall film.

Figure S6. Storage stability of ECL sensor for the Calcein/LDH nanowall film stored in 0.1 M PBS of pH 7.4 at 4 °C for one month.

Figure S7. (A) ECL spectra of the Calcein/LDH nanowall film and (B) column graph recorded in 0.1 mM DA and 50 mM AA (0.1 M PBS at pH=7.4).