Supplementary data

Synthesis of Novel Isophorone-based Dyes for Dye-sensitized Solar Cells

Yih-Chun Chen, Yan-Zuo Lin, Yu-Ting Cheng, and Yuan Jay Chang*

Department of Chemistry, Tung Hai University, Taichung 40704, Taiwan

Contents

1.	Experimental	2-4
2.	¹ H and ¹³ C NMR spectra	5-17
3.	UV/Vis spectra	18
4.	Theoretical calculation	18-19
5.	CV spectra	20
6.	Different solvent system in DSSCs performance	20
7.	Dye loading amount with/without DCA	21

* Corresponding author. Tel.: +886-4-23590121 ext 32224; fax: +886-4-23590426; E-mail: jaychang@thu.edu.tw

1. Experimental

Ethyl (*E*,*Z*)-2-cyano-2-(3,5,5-trimethylcyclohex-2-en-1-ylidene)acetate (B). Isophorone A (2.0 g, 14.47 mmol), ethyl cyanoacetate (1.54 mL, 14.47 mmol), ammonium acetate (579 mg, 7.06 mmol), acetic acid (1.2 mL), and benzene (20 mL) were mixed in a three-necked flask under N₂ and heated to reflux by using the Dean–Stark apparatus. After 12 h, the mixture was extracted using ethyl acetate. The organic layer was dried over anhydrous MgSO₄ and evaporated under vacuum, and the crude product was purified through vacuum distillation. An 80% yield of a yellow liquid **B** (*Z*-:*E*-= 1:1) (2.69 g, 11.57 mmol) was obtained. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.41 (s, 0.5H), 6.43 (s, 0.5H), 4.01–4.08 (m, 2H), 2.69 (s, 1H), 2.33 (s, 1H), 1.95 (s, 1H), 1.93 (s, 1H), 1.80 (s, 1.5H), 1.78 (s, 1.5H), 1.14 (t, 3H, *J* = 7.08 Hz), 0.80 (s, 3H), 0.78 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 166.3, 165.0, 162.1, 161.5, 156.4, 155.9, 121.9, 119.7, 116.0, 115.3, 98.1, 97.4, 60.5, 44.8, 44.4, 43.6, 39.4, 31.4, 31.0, 27.4, 27.2, 24.8, 24.6, 13.5. MS (FAB, 70 eV): m/z (relative intensity) 233 (M⁺, 100); HRMS calcd for C₁₄H₁₉NO₂: 233.1416, found 233.1420.

10-(4-(Hexyloxy)phenyl)-10H-phenothiazine-3-carbaldehyde (D-1). A solution of n-BuLi (6.2 mL, 9.93 mmol, 1.6 M in hexane) was added dropwise to a solution of C-1 (3.0 g, 6.62 mmol) in THF at -78 °C. The mixture was stirred for 1 h, and dimethyl formamide (DMF; 0.76 mL, 9.93 mmol) was then added to it. Furthermore, the mixture was stirred with a magnetic bar for 6 h, the reaction was quenched by adding water, and the product was extracted using ethyl acetate. The organic layer was dried over anhydrous MgSO₄ and concentrated under reduced pressure to yield the crude product. product was purified using a silica gel column chromatograph eluted The with dichloromethane/hexane (1/1). A light yellow solid (**D-1**) was obtained in a 77% yield (2.06 g, 5.10 mmol). $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.69 (s, 1H), 7.45 (d, 1H, J = 1.6 Hz), 7.28 (dd, 1H, J = 8.2, 2.0 Hz), 7.27 (d, 2H, J = 8.8 Hz), 7.13 (d, 2H, J = 8.8 Hz), 6.96 (dd, 1H, J = 5.6, 3.6 Hz), 6.84 (dd, 2H, J =5.8, 3.6 Hz), 6.22 (d, 1H, J = 8.8 Hz), 6.17–6.19 (m, 1H), 4.05 (t, 2H, J = 6.4 Hz), 1.84–1.88 (m, 2H), 1.51–1.55 (m, 2H), 1.38–1.42 (m, 4H), 0.93–0.97 (m, 3H). δ_C (100 MHz, CDCl₃) 189.6, 159.2, 149.5, 142.8, 132.0, 131.6, 130.9, 129.9, 127.3, 127.1, 126.6, 123.5, 120.0, 118.9, 116.7, 116.4, 115.0, 68.4, 31.5, 29.2, 25.7, 22.6, 14.0. MS (FAB, 70 eV): m/z (relative intensity) 404 ((M+H)⁺, 100). HRMS calcd for C₂₅H₂₅NO₂S: 404.1684, found 404.1694.

4-(Diphenylamino)benzaldehyde (D-2). Compound **D-2** was synthesised using a method similar to that of **D-1**, producing a yellow solid in an 85% yield. $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.80 (s, 1H), 7.66 (d, 2H, J = 8.6 Hz), 7.31–7.35 (m, 4H), 7.14–7.18 (m, 6H), 7.01 (d, 2H, J = 8.6 Hz). $\delta_{\rm C}$ (100 MHz, CDCl₃) 190.3, 153.3, 146.1, 131.2, 129.6, 129.0, 126.2, 125.0, 119.2. MS (FAB, 70 eV): m/z (relative intensity) 273 ((M+H)⁺, 100); HRMS calcd for C₁₉H₁₅NO: 273.1154, found 273.1160.

4-(N-(naphthalen-1-yl)-N-phenylamino)benzaldehyde (**D-3**). Compound **D-3** was synthesised using a method similar to that of **D-1**, producing a yellow solid in a 70% yield. $\delta_{\rm H}$ (500 MHz, CDCl₃) 9.76 (s, 1H), 7.90 (d, 1H, J = 8.6 Hz), 7.89 (d, 1H, J = 8.9 Hz), 7.83 (d, 1H, J = 8.2 Hz), 7.63 (d, 2H, J = 8.8 Hz), 7.46-7.50 (m, 2H), 7.37–7.40 (m, 2H), 7.23–7.30 (m, 4H), 7.10 (t, 2H, J = 6.7 Hz), 6.89 (d, 2H, J = 8.8 Hz). $\delta_{\rm C}$ (125 MHz, CDCl₃) 190.3, 153.7, 146.2, 141.8, 135.2, 131.4, 129.6, 128.6, 124.8, 124.7, 123.6, 117.7. MS (FAB, 70 eV): m/z (relative intensity) 323 ((M+H)⁺, 100); HRMS calcd for C₂₃H₁₇NO: 323.1310, found 323.1313.

4-(Bis(4-(hexyloxy)phenyl)amino)benzaldehyde (D-4). Compound **D-4** was synthesised using a method similar to that of **D-1**, producing an orange solid in a 58% yield. $\delta_{\rm H}$ (300 MHz, CDCl₃) 9.74 (s, 1H), 7.61 (d, 2H, J = 8.88 Hz), 7.11 (d, 4H, J = 8.88 Hz), 6.82–6.89 (m, 6H), 3.94 (t, 4H, J = 6.48 Hz), 1.73–1.80 (m, 4H), 1.41–1.48 (m, 4H), 1.31-1.36 (m, 8H), 0.91 (t, 6H, J = 7.17 Hz). $\delta_{\rm C}$ (75 MHz, CDCl₃) 190.2, 156.8, 154.0, 138.5, 131.3, 127.9, 127.5, 116.6, 115.5, 68.2, 31.5, 29.2, 25.7, 22.5, 14.0. MS (FAB, 70 eV): m/z (relative intensity) 473 (M⁺, 100); HRMS calcd for C₃₁H₃₉NO₃: 473.2924, found 473.2921.

Ethyl (E,Z)-2-cyano-2-(3-((E)-2-(10-(4-(hexyloxy)phenyl)-10H-phenothiazin-3-yl)vinyl)-

5,5-dimethyl-cyclohex-2-en-1-ylidene)acetate (E-1). Compounds **D-1** (5 g, 12.4 mmol) and **B** (3g, 9.3 mmol) were mixed in a three-necked flask under a nitrogen atmosphere and stirred in dry ACN for a while. Furthermore, piperidine (1.1 mL, 10.2 mmol) was added, and the mixture was heated at 90 °C overnight. The product was extracted using dichloromethane (DCM), and the organic layer was dried over anhydrous MgSO₄ and evaporated under vacuum. The product was purified using a silica gel column chromatograph, with ethyl acetate/hexane (1/15) as the eluent. A dark red solid (**E-1**) was obtained in a 67% yield. $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.89 (s, 1H), 7.27–7.30 (m, 2H), 7.12–7.14 (m, 3H), 6.74–7.00 (m, 6H), 6.13–6.19 (m, 2H), 4.26–4.34 (m, 2H), 6.13–6.19 (m, 2H), 4.06 (t, 2H, *J* = 6.52 Hz), 2.98 (s, 1H), 2.63 (s, 1H), 2.38 (s, 1H), 2.37 (s, 1H), 1.85-1.88 (m, 2H), 1.52–1.55 (m, 2H), 1.35–1.42 (m, 6H), 1.07 (s, 3H), 1.04 (s, 3H), 0.95 (t, 3H, *J* = 7.04 Hz). $\delta_{\rm C}$ (100 MHz, CDCl₃) 166.5, 164.9, 163.2, 162.8, 159.0, 152.3, 151.9, 145.3, 145.2, 143.7, 133.6, 132.5, 131.9, 130.4, 130.3, 128.5, 127.8, 126.9, 126.5, 126.4, 126.3, 125.9, 125.1, 124.9, 123.8, 122.6, 120.0, 119.0, 117.4, 116.6, 116.5, 115.9, 115.6, 99.0, 98.3, 68.3, 61.4, 61.3, 44.7, 40.8, 39.2, 38.8, 31.8, 31.5, 31.3, 29.2, 28.3, 28.1, 25.7, 22.6, 14.1, 14.0. MS (FAB, 70 eV): m/z (relative intensity) 618 (M⁺, 100); HRMS calcd for C₃₉H₄₂N₂O₃S: 618.2911, found 618.2897.

Ethyl (E,Z)-2-cyano-2-(3-((E)-4-(diphenylamino)styryl)-5,5-dimethylcyclohex-2-en-1-

ylidene)acetate (E-2). Compound E-2 was synthesised using a method similar to that of E-1, producing a red solid in a 95% yield. $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.85 (s, 1H), 7.30 (d, 1H, J = 8.20 Hz),

7.28 (d, 1H, J = 8.35 Hz), 7.21–7.25 (m, 4H), 7.07 (d, 4H, J = 7.45 Hz), 7.03 (t, 2H, J = 7.35 Hz), 6.97 (d, 1H, J = 8.15 Hz), 6.96 (d, 1H, J = 8.35 Hz), 6.84–6.85 (m, 2H), 4.20–4.26 (m, 2H), 2.93 (s, 1H), 2.58 (s, 1H), 2.36 (s, 1H), 2.34 (s, 1H), 1.29–1.33 (m, 3H), 1.01 (s, 3H), 0.99 (s, 3H). $\delta_{\rm C}$ (125 MHz, CDCl₃) 166.7, 165.0, 163.3, 162.8, 152.6, 152.2, 148.9, 148.8, 147.0, 134.7, 134.6, 129.5, 129.4, 129.2, 128.4, 128.3, 127.8, 125.7, 125.1, 123.7, 123.6, 122.2, 117.5, 116.7, 98.8, 98.1, 61.4, 61.3, 44.7, 40.9, 39.2, 38.8, 31.8, 31.4, 28.3, 28.1, 14.1. MS (FAB, 70 eV): m/z (relative intensity) 488 (M⁺, 100); HRMS calcd for C₃₃H₃₂N₂O₂: 488.2464, found 488.2466.

(Ethyl (*E*,*Z*)-2-cyano-2-(5,5-dimethyl-3-((*E*)-4-(naphthalen-1-yl(phenyl)amino)styryl)cyclohex-2-en-1-ylidene)acetate (E-3). Compound E-3 was synthesised using a method similar to that of E-1, producing a red solid in a 95% yield. $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.90 (s, 1H), 7.88 (d, 2H, *J* = 7.40 Hz), 7.80 (d, 1H, *J* = 8.25 Hz), 7.49 (d, 1H, *J* = 8.0 Hz), 7.46 (d, 1H, *J* = 8.50 Hz), 7.33–7.38 (m, 2H), 7.22–7.30 (m, 4H), 7.12 (d, 2H, *J* = 6.35 Hz), 7.01 (t, 1H, *J* = 7.30 Hz), 4.25–4.28 (m, 2H), 2.96 (s, 1H), 2.61 (s, 1H), 2.38 (s, 1H), 2.37 (s, 1H), 1.33–1.36 (m, 3H), 1.04 (s, 3H), 1.02 (s, 3H). $\delta_{\rm C}$ (125 MHz, CDCl₃) 166.9, 165.2, 163.5, 163.0, 152.9, 152.5, 149.7, 149.6, 147.5, 142.8, 135.4, 135.0, 134.9, 131.2, 129.4, 129.3, 128.4, 128.8, 128.7, 128.6, 128.5, 128.2, 127.6, 127.5, 127.1, 126.8, 126.5, 126.4, 125.7, 124.1, 123.6, 123.4, 123.2, 120.4, 117.7, 117.0, 98.8, 98.1, 61.5, 61.4, 44.9, 41.0, 39.4, 39.0, 31.9, 31.5, 28.5, 28.3, 14.3. MS (FAB, 70 eV): *m*/*z* (relative intensity) 538 (M⁺, 100); HRMS calcd for C₃₇H₃₄N₂O₂: 538.2620, found 538.2621.

Ethyl(*E*,*Z*)-2-(3-((*E*)-4-(bis(4-(hexyloxy)phenyl)amino)styryl)-5,5-dimethylcyclohex-2-en-1-ylide ne)-2-cyanoacetate (E-4). Compound E-4 was synthesised using a method similar to that of E-1, producing an orange solid in an 82% yield. $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.91 (s, 0.5H), 7.30 (t, 2H, *J* = 4.38 Hz), 7.06–7.09 (m, 4H), 6.85–6.90 (m, 8.5H), 4.27–4.31 (m, 2H), 3.94–3.97 (m, 4H), 2.99 (s, 1H), 2.64 (s, 1H), 2.42 (s, 1H), 2.40 (s, 1H), 1.76–1.81 (m, 4H), 1.46–1.49 (m, 4H), 1.36–1.39 (m, 11H), 1.05 (s, 3H), 1.07 (s, 3H), 0.91–0.95 (m, 6H). $\delta_{\rm C}$ (100 MHz, CDCl₃) 166.8, 165.1, 163.4, 163.0, 156.1, 153.1, 152.7, 149.9, 149.9, 139.7, 135.2, 135.1, 128.4, 128.3, 127.6, 127.5, 127.4, 127.2, 126.7, 125.2, 132.2, 119.1, 115.4, 98.2, 97.5, 68.2, 61.3, 61.2, 44.7, 40.9, 39.3, 38.9, 31.8, 31.6, 31.4, 29.3, 28.3, 28.1, 25.7, 22.6, 14.2, 14.0. MS (FAB, 70 eV): m/z (relative intensity) 688 (M⁺, 100); HRMS calcd for C₄₅H₅₆N₂O₄: 688.4233, found 688.4233.

2. ¹H and ¹³C NMR spectra

Fig. S1. ¹H NMR (upper) and ¹³C NMR (lower) spectra of **B** in CDCl₃.

Fig. S2. ¹H NMR (upper) and ¹³C NMR (lower) spectra of **D-1** in CDCl₃.

Fig. S3. ¹H NMR (upper) and ¹³C NMR (lower) spectra of **D-2** in CDCl₃.

Fig. S4. ¹H NMR (upper) and ¹³C NMR (lower) spectra of **D-3** in CDCl₃.

Fig. S5. ¹H NMR (upper) and ¹³C NMR (lower) spectra of **D-4** in CDCl₃.

Fig. S6. ¹H NMR (upper) and ¹³C NMR (lower) spectra of E-1 in CDCl₃.

Fig. S7. ¹H NMR (upper) and ¹³C NMR (lower) spectra of E-2 in CDCl₃.

Fig. S8. ¹H NMR (upper) and ¹³C NMR (lower) spectra of E-3 in CDCl₃.

Fig. S9. ¹H NMR (upper) and ¹³C NMR (lower) spectra of E-4 in CDCl₃.

Fig. S10. ¹H NMR (upper) and ¹³C NMR (lower) spectra of YC-1 in CDCl₃.

Fig. S11. ¹H NMR (upper) and ¹³C NMR (lower) spectra of YC-2 in CDCl₃.

Fig. S12. ¹H NMR (upper) and ¹³C NMR (lower) spectra of YC-3 in CDCl₃.

Fig. S13. ¹H NMR (upper) and ¹³C NMR (lower) spectra of YC-4 in CDCl₃.

3. UV/Vis spectra

Fig. S14. The absorption and emission spectra of YC-series organic dyes in CH₂Cl₂.

4. Theoretical calculation

dye	state	excitation ^a	λ _{cal} (eV, nm)	f ^b B3LYP/631G*	Dipole moment (D)
YC-1	S1 S2 S3	96.21% H→L 84.82% H-1→L 83.44% H-2→L	2.30(538) 3.12(397) 3.52 (352)	0.6122 0.8568 0.1828	12.8343
YC-2	S1 S2 S3	98.16% H→L 89.88% H-1→L 54.37% H→L+2	2.41(512) 3.39(365) 3.81(325)	1.0267 0.7681 0.0109	9.2625
YC-3	S1 S2 S3	97.69% H→L 81.12% H→L+1 52.53% H-1→L	2.45(505) 3.20(387) 3.33(371)	1.1211 0.0856 0.3573	9.1517
YC-4	S1 S2 S3	98.66% H→L 91.35% H-1→L 96.00% H-2→L	2.28(542) 3.26(379) 3.61(343)	1.1391 0.8260 0.0094	11.9272

Table S1. Calculated Low-Lying Transition for dyes.

"H=HOMO, L=LUMO, H+1=HOMO+1, L+1=LUMO+1, and L+2=LUMO+2. "Oscillator strengths."

dye	state	D	B	Α
YC-1	S_1-S_0	0.72242	-0.50128	-0.22114
YC-2	S_1-S_0	0.66009	-0.45257	-0.20752
YC-3	S_1-S_0	0.63324	-0.43408	-0.19916
YC-4	$S_1 - S_0$	0.68887	-0.47468	-0.21419

Table S2. Difference of Mulliken charges between ground state (S_0) and excited state (S_1) , estimated by time dependent DFT/B3LYP model.

Difference of Mulliken charge between ground state and excited state.

Fig. S15. Computed HOMO and LUMO orbitals of organic dyes.

5. CV spectra and HOMO-LUMO level

Fig. S16. Oxidative voltammograms of YC-series organic dyes in CH₂Cl₂.

6. Different solvent system in DSSCs performance

I			,	-	
Solvent system	dye	$J_{\rm sc}({\rm mA}{\cdot}{\rm cm}^{-2})$	$V_{\rm oc}({ m V})$	FF	η^a (%)
	YC-1	10.47	0.67	0.54	4.50
THE	YC-2	9.65	0.63	0.60	3.61
ІПГ	YC-3	10.63	0.63	0.60	3.99
	YC-4	11.14	0.65	0.55	3.97
	YC-1	14.86	0.67	0.62	6.18
CULCL	YC-2	12.18	0.64	0.62	4.92
	YC-3	12.43	0.65	0.63	5.08
	YC-4	13.44	0.66	0.60	5.37
MeCN/t-BuOH(1/1)	N719	15.94	0.73	0.60	7.02

Table S3. Photovoltaic parameters of Devices made YC-1, YC-2, YC-3 and YC-4 in THF and CH₂Cl₂.

 J_{sc} : short-circuit photocurrent density; V_{oc} : open-circuit photovoltage; FF: fill factor; η : total power conversion efficiency. ^{*a*} Performance of DSSC measured in a 0.25 cm² working area on an FTO (7 Ω /square) substrate. Electolyte 1 (E1): LiI (0.5M), I₂ (0.05M), and TBP (0.5M) in MeCN.

7. Dyes loading amount

-				
dye ^a	DCA (mM)	Loading amount (10 ⁻⁷ mol/cm ⁻²)		
YC-1	0	13.4		
	10	10.2		
YC-2	0	6.3		
	10	9.0		
YC-3	0	8.3		
	10	8.7		
YC-4	0	11.8		
	10	10.1		
	^a Concentration	^{<i>a</i>} Concentration of dye is 3×10^{-4} M in CH ₂ Cl ₂ .		

Table S4 Dyes loading amount on TiO_2 surface using YC-1–4 with and without deoxycholic acid