Supporting Information

Synthesis and performance of hollow LiNi_{0.5}Mn_{1.5}O₄ with different

particle sizes for lithium-ion batteries

Yuan Xue, ^a Zhen-Bo Wang, ^{a, *} Li-Li Zheng ^{a, b}, Fu-Da Yu ^{a, b}, Bao-Sheng Liu ^a, Yin

Zhang, ^a Yu-Xiang Zhou ^b

^a School of Chemical Engineering and Technology, Harbin Institute of

Technology, No. 92 West-Da Zhi Street, Harbin, 150001 China

^b School of Science, Harbin Institute of Technology, No.92 West-Da Zhi Street,

Harbin, 150001 China

* Corresponding author. Tel.: +86-451-86417853; Fax: +86-451-86418616.

Email: wangzhb@hit.edu.cn (Z.B. Wang)

Figure S1. SEM micrographs of mixture of $MnCO_3$ -4 before calcined (a), when temperatures reach 850 °C (b) and after calcined at 850 °C for 1, 2, 4, 6, 10 hours (c~g).

Figure S2. SEM micrographs of product obtained by LiOH and $MnCO_3$ -4 without $Ni(NO_3)_2$.

Figure S3. Cycling performance of four $LiNi_{0.5}Mn_{1.5}O_4$ samples at rates of 1 C, 2 C and 5 C.