Supplementary Information

Novel yet simple strategy to fabricate visible light responsive $C,N-TiO_2/g-C_3N_4$ heterostructures with significantly enhanced photocatalytic hydrogen generation

Wei Chen^a, Tian-Yu Liu^a, Ting Huang^a, Xiao-Heng Liu^a,*, Guo-Rong Duan^a, Xu-Jie Yang^a and Shen-Ming Chen^b,*

^aKey Laboratory of Education Ministry for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China

^b Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (ROC).

Corresponding author.

E-mail: xhliu@mail.njust.edu.cn (X.H. Liu)

smchen78@ms15.hinet.net(S.M. Chen;)

Figure S1. (a) Raman profiles of the $C,N-TiO_2$ NPs sample and P25

sample, (b) D and G bands in the higher frequency region.

Figure S2. Typical FT -IR spectra of C,N-TiO₂ NPs sample.

Figure S3. XPS spectra of C,N-TiO₂ NPs at the N 1s region.

Figure S4. Digital photograph of bulk $g-C_3N_4$ and porous $g-C_3N_4$ ultrathin NSs.

Figure S5. UV-vis diffuse reflectance spectra of bulk $g-C_3N_4$ and ultrathin $g-C_3N_4$ NSs.

Figure S6. Typical FE-SEM images of (a) bulk $g-C_3N_4$, (b) ultrathin $g-C_3N_4$ NSs, TEM images of (c) C,N-TiO₂ NPs and (d) $g-C_3N_4$ NSs, and (e) AFM of $g-C_3N_4$ NSs.

Figure S7. N₂ adsorption-desorption isotherms and pore size distribution curves (inset) of (a) bulk $g-C_3N_4$ and (b) ultrathin $g-C_3N_4$ NSs.