Supporting Information

Highly Selective and Sensitive Fluorescence Probe Based on Thymine-modified Carbon Dots for Hg²⁺

and L-Cysteine Detection

Hui Xu^a, Shanshan Huang^a, Caiyun Liao^a, Yang Li^a, Baozhan Zheng^a, Juan Du^{*a} and Dan Xiao^{*a,b}

^a College of Chemistry, Sichuan University, Chengdu 610064, PR China

^b College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China

E-mail: xiaodan@scu.edu.cn;

E-mail: <u>lxdj@vip.sina.com;</u>

Fax: +86-28-85416029; Tel: +86-28-85415029

Fig. S1. The size distribution of CDs (A) and CDs-T (B).

Fig. S2. The high-resolution XPS spectra of CDs-T C_{1s} (A), N_{1s} (B), and O_{1s} (C).

Fig. S3. Fluorescence intensity ratio for CDs (10 µg·mL⁻¹) in the presence of 20 µM different metal ions.

Fig. S4. Fluorescence intensity ratio of the CDs-T (10 μ g·mL⁻¹) in the absence and in the presence of Hg²⁺ (20 μ M) as a function of pH (λ_{ex} = 360 nm).

Table S1. Comparison of unrefer thanoparticles-based methods for the detection of Hg ⁻ .					
Method	Liner range	Detect limit	Reference		
Mononucleotides-stabilized gold nanoparticles	0.02-6.0 μM	50 nM	S^1		
Carbon nanodots	0-3 µM	4.2 nM	S^2		
CdSe@ZnS quantum dots and carbon dots	0.2 - 2 μM	100 nM	S^3		
Carbon dots-labeled oligodeoxyribonucleotide	0.005-0.2 μM	2.6 nM	S^4		
Quantum dots/DNA/gold nanoparticles	0.002-0.06 µM	2 nM	S ⁵		
Colorimetric gold nanoparticles on paper-based	0.025-0.75 μM	50 nM	S ⁶		
Thymine-modified carbon dots	0.03-8 µM	0.93 nM	This work		

Table S1. Comparison of different nanoparticles-based methods for the detection of Hg^{2+}

_

Fig. S5. Fluorescence change of CDs-T/Hg²⁺ in the presence of various amino acids with a concentration of 10 μ M. (λ_{ex} = 360 nm, λ_{em} = 450 nm).

Fig. S6. Fluorescence change of CDs-T/Hg²⁺ in the absence and presence of various biothiols with a concentration of 10 μ M. (λ_{ex} = 360 nm, λ_{em} = 450 nm).1-CDs-T/Hg²⁺, 2-CDs-T/Hg²⁺ + L-Cys, 3-CDs-T/Hg²⁺ + GSH, 4-CDs-T/Hg²⁺ + cysteamine, 5-CDs-T/Hg²⁺ + mercaptoacetic acid.

Table S2. Com	parison of	different nanc	particles-based	methods for	or the o	detection o	f _L -C	ys
---------------	------------	----------------	-----------------	-------------	----------	-------------	-------------------	----

Method	Liner range	Detect limit	Reference
Carbon nanodots	0.01 - 5 μM	4.9 nM	S ²
Oligonucleotide-stabilized fluorescent silver nanoclusters	0.008-0.1 µM	4 nM	S^7
Conducting polymers/gold nanoparticles	0.5-200 µM	50 nM	S^8
Cellulose polyampholyte-gold nanoparticles	0.1-10 µM	20 nM	S ⁹
Graphene quantum dots	0.01-0.6 µM	4.5 nM	S^{10}
Thymine-modified carbon dots	0.003-7 μM	0.88 nM	This work

Fig. S7 Reversibility of CDs-T for Hg²⁺ and _L-Cys

References

- 1. Y. Xu, L. Deng, H. Wang, X. Ouyang, J. Zheng, J. Li and R. Yang, Chem. Commun., 2011, 47, 6039-6041.
- 2. L. Zhou, Y. Lin, Z. Huang, J. Ren and X. Qu, Chem. Commun., 2012, 48, 1147-1149.
- 3. B. Cao, C. Yuan, B. Liu, C. Jiang, G. Guan and M.-Y. Han, Analytica chimica acta, 2013, 786, 146-152.
- 4. X. Cui, L. Zhu, J. Wu, Y. Hou, P. Wang, Z. Wang and M. Yang, Biosens. Bioelectron., 2015, 63, 506-512.

5. M. Li, Q. Wang, X. Shi, L. A. Hornak and N. Wu, Anal. Chem., 2011, 83, 7061-7065.

6. G.H. Chen, W.Y. Chen, Y.C. Yen, C.W. Wang, H.T. Chang and C.F. Chen, Anal. Chem., 2014, 86, 6843-6849.

7. B. Han and E. Wang, Biosens. Bioelectron., 2011, 26, 2585-2589.

8. Y.P. Hsiao, W.Y. Su, J.R. Cheng and S.H. Cheng, Electrochimica Acta, 2011, 56, 6887-6895.

- 9. J. You, H. Hu, J. Zhou, L. Zhang, Y. Zhang and T. Kondo, Langmuir, 2013, 29, 5085-5092.
- 10.Z. Li, Y. Wang, Y. Ni and S. Kokot, Sensors and Actuators B: Chemical, 2015, 207, Part A, 490-497.