S1: Separation and characterization of Curcumin (CUR)
1HNMR: (d-DMSO): $\delta 3.82$ (s, 6H, O-CH3), 6.05 (s, 1H, $-\mathrm{CO}-\mathrm{CH}=\mathrm{COH}-$), 6.75 (d, J $15.87 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-$ $\mathrm{CO}-\mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\mathrm{COH}-$), 6.81 (d, J $7.93 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H} 3, \mathrm{Ph}-\mathrm{H} 30$), 7.14 (dd, J 1.53 and $8.24 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H} 2, \mathrm{Ph}-$ H20), 7.31 (d, J $1.53 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H} 1, \mathrm{Ph}-\mathrm{H} 10$), 7.53 (d, J $15.87 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-$), 9.67 (br, 1H, exchangeable with D2O, Ph-COHyCH).TLC: stationary phase-silica gelGF254, mobile phase dichloromethane/methanol (97:3): Rf ofcurcumin $=0.70$, Rf of demethoxycurcumin $=0.63$ and Rf of bisdemethoxycurcumin $=0.52$.

S2: Synthesis and characterization of Diacetylcurcumin (DAC)
Curcumin ($0.368 \mathrm{~g}, 1 \mathrm{mmol}$) was dissolved in (molecular sieve) dried pyridine (2 ml). Aceticanhydride (0.48 ml) was then added dropwise to this solution and the reaction mixture was stirred for 2 h at room temperature. Saturated sodium bicarbonate solution was added to the reaction mixture to neutralize excess acetic anhydride. The mixture was extracted with ethyl acetate $(3 \times 30 \mathrm{ml})$. The combined ethyl acetate layer was dried over anhydrous sodium sulfate and evaporated under reduced pressure. The resulting solid was collected and recrystallised with ethyl acetate/hexane to give diacetylcurcumin $420 \mathrm{mg}(92.92 \%$ yield $), \mathrm{mp}=166-167^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr})\left(\mathrm{cm}^{-1}\right): 3460(\mathrm{O}-\mathrm{H})$, 3039 (alkene $\mathrm{C}-\mathrm{H}), 2940$ (alkane $\mathrm{C}-\mathrm{H}), 1762$ ($\mathrm{C}=\mathrm{O}$ ester), 1637 ($\mathrm{C}=\mathrm{O}$ ketone), 1604-1512 ($\mathrm{C}=\mathrm{C}$), $1452\left(-\mathrm{CH}_{3}\right)$, 1189-1123 (C-O). ${ }^{1} \mathrm{H}$ NMR (d-DMSO): $\delta 2.27$ (s, 6H, $\mathrm{Ph}-\mathrm{O}-\mathrm{CO}-\mathrm{CH}_{3}$), 3.85 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Ph}-\mathrm{O}-\mathrm{CH}_{3}$), 6.20 ($\mathrm{s}, 1 \mathrm{H}$, -$\mathrm{COH}=\mathrm{CH}-\mathrm{CO}-$), 7.003 (d, J $15.89 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\mathrm{COH}-$), 7.16 (d, J $8.07 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H} 6$), 7.33 (dd, J 1.23 and $8.24 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H} 5$), 7.52 (d, J $1.20 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H} 3$), 7.65 (d, J $16.09 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\mathrm{COH}-$). ${ }^{13} \mathrm{C}$ NMR (d-DMSO): $\delta 20.57$ (2C), 56.08 (2C), 81.81 (1C), 112.15 (2C), 121.60 (2C), 123.50 (2C), 124.72 (2C), 133.83 (2C), 140.03 (2C), 141.03 (2C), 151.33 (2C), 168.60 (1C), 183.37 (1C), 183.98 (2C).

