Supporting Information

Syntheses, structures and properties of five entangled coordination polymers

constructed with trigonal N-donor ligands

Yu Chen, Juan Yang, Xi-Chi Wang, Yu-Ci Xu, Hui-Ling Xu, Xiao-Shan Zeng and Dong-Rong

Xiao*

Table S1 Selected bond lengths (Å) and angles (°) for 1-5.						
Compound 1						
Co(1)-O(1)#1	1.9931(15)	O(5)-Co(1)-O(2)#1	96.80(6)			
Co(1)-O(2)#1	2.3442(16)	O(5)-Co(1)-N(1)	93.54(7)			
Co(1)-O(3)	2.0002(18)	N(1)-Co(1)-O(2)#1	164.83(6)			
Co(1)-O(5)	2.0028(15)	O(7)#2-Co(2)-O(7)	180.0			
Co(1)-N(1)	2.0484(18)	O(7)#2-Co(2)-N(3)#3	86.62(6)			
Co(2)-O(7)#2	2.0965(15)	O(7)#2-Co(2)-N(3)#4	93.38(6)			
Co(2)-O(7)	2.0965(15)	O(7)#2-Co(2)-N(6)	92.42(6)			
Co(2)-N(3)#3	2.2067(16)	O(7)#2-Co(2)-N(6)#2	87.58(6)			
Co(2)-N(3)#4	2.2067(16)	O(7)-Co(2)-N(3)#3	93.38(6)			
Co(2)-N(6)	2.1266(17)	O(7)-Co(2)-N(3)#4	86.62(6)			
Co(2)-N(6)#2	2.1266(17)	O(7)-Co(2)-N(6)	87.58(6)			
O(1)#1-Co(1)-O(2)#1	60.27(6)	O(7)-Co(2)-N(6)#2	92.42(6)			
O(1)#1-Co(1)-O(3)	98.25(8)	N(3)#4-Co(2)-N(3)#3	180.00(8)			
O(1)#1-Co(1)-O(5)	128.49(7)	N(6)#2-Co(2)-N(3)#3	85.82(6)			
O(1)#1-Co(1)-N(1)	104.58(6)	N(6)#2-Co(2)-N(3)#4	94.18(6)			
O(3)-Co(1)-O(2)#1	88.04(8)	N(6)-Co(2)-N(3)#3	94.19(6)			
O(3)-Co(1)-O(5)	128.47(7)	N(6)-Co(2)-N(3)#4	85.81(6)			
O(3)-Co(1)-N(1)	94.19(8)	N(6)-Co(2)-N(6)#2	180.0			
Compound 2						
Ni(1)-O(1)	2.0869(13)	O(5)-Ni(1)-N(5)#2	87.81(6)			
Ni(1)-O(5)	2.0933(15)	N(1)-Ni(1)-O(5)	176.86(7)			
Ni(1)-O(6)	2.1214(16)	N(1)-Ni(1)-O(6)	89.11(7)			
Ni(1)-N(1)	2.0885(15)	N(1)-Ni(1)-N(5)#2	91.50(6)			

Ni(1)-N(3)#1	2.0833(15)	N(3)#1-Ni(1)-O(1)	87.78(6)
Ni(1)-N(5)#2	2.0958(15)	N(3)#1-Ni(1)-O(5)	91.26(7)
O(1)-Ni(1)-O(5)	90.60(6)	N(3)#1-Ni(1)-O(6)	172.66(7)
O(1)-Ni(1)-O(6)	84.95(6)	N(3)#1-Ni(1)-N(1)	91.85(6)
O(1)-Ni(1)-N(1)	89.88(6)	N(3)#1-Ni(1)-N(5)#2	96.02(6)
O(1)-Ni(1)-N(5)#2	175.91(6)	N(5)#2-Ni(1)-O(6)	91.22(6)
O(5)-Ni(1)-O(6)	87.84(7)		
	Compo	ound 3	
Cu(1)-O(1)	2.0278(13)	O(2)#1-Cu(1)-O(3)#2	149.71(5)
Cu(1)-O(2)#1	1.9548(13)	O(2)#1-Cu(1)-N(1)	87.42(6)
Cu(1)-O(3)#2	2.0251(12)	O(2)#1-Cu(1)-N(2)#3	116.52(6)
Cu(1)-N(1)	2.0418(16)	O(3)#2-Cu(1)-O(1)	92.08(5)
Cu(1)-N(2)#3	2.2738(15)	O(3)#2-Cu(1)-N(1)	86.54(6)
O(1)-Cu(1)-N(1)	176.67(6)	O(3)#2-Cu(1)-N(2)#3	93.50(5)
O(1)-Cu(1)-N(2)#3	89.18(5)	N(1)-Cu(1)-N(2)#3	93.92(6)
O(2)#1-Cu(1)-O(1)	92.28(5)		
	Compo	ound 4	
Co(1)-O(1)#1	2.1267(16)	O(2)#1-Co(1)-O(2)	180.00(7)
Co(1)-O(1)	2.1267(16)	O(2)-Co(1)-N(1)#1	88.19(6)
Co(1)-O(2) #1	2.1242(15)	O(2)#1-Co(1)-N(1)#1	91.81(6)
Co(1)-O(2)	2.1242(15)	O(2)-Co(1)-N(1)	91.81(6)
Co(1)-N(1)	2.1960(17)	O(2)#1-Co(1)-N(1)	88.19(6)
Co(1)-N(1)#1	2.1959(17)	N(1)#1-Co(1)-N(1)#1	180.0
Co(2)-O(5)#2	2.0524(15)	O(5)#2-Co(2)-O(5)#3	175.59(10)
Co(2)-O(5)#3	2.0524(15)	O(5)#3-Co(2)-O(6)	84.41(6)
Co(2)-O(6) #4	2.1451(16)	O(5)#2-Co(2)-O(6)#4	84.41(6)
Co(2)-O(6)	2.1451(16)	O(5)#3-Co(2)-O(6)#4	92.43(6)
Co(2)-N(4)#4	2.1603(18)	O(5)#2-Co(2)-O(6)	92.43(6)
Co(2)-N(4)	2.1603(18)	O(5)#2-Co(2)-N(4)#4	90.59(7)
O(1)#1-Co(1)-O(1)	180.0	O(5)#3-Co(2)-N(4)#4	92.52(6)
O(1)-Co(1)-N(1)	89.96(6)	O(5)#2-Co(2)-N(4)	92.52(6)
O(1)#1-Co(1)-N(1)	90.04(6)	O(5)#3-Co(2)-N(4)	90.59(7)
O(1)-Co(1)-N(1)#1	90.03(6)	O(6)#4-Co(2)-O(6)	88.74(10)
O(1)#1-Co(1)-N(1)#1	89.96(6)	O(6)#4-Co(2)-N(4)#4	174.94(7)
O(2)#1-Co(1)-O(1)#1	62.22(6)	O(6)#4 -Co(2)-N(4)	90.67(7)
O(2) -Co(1)-O(1)	62.22(6)	O(6) -Co(2)-N(4)	174.94(7)

O(2)#1-Co(1)-O(1)	117.79(6)	O(6)-Co(2)-N(4)#4	90.67(7)		
O(2)-Co(1)-O(1)#1	117.78(6)	N(4)#4-Co(2)-N(4)	90.35(10)		
Compound 5					
Ni(1)-O(1)	2.1009(15)	O(2)-Ni(1)-O(2)#1	180.00(5)		
Ni(1)-O(1)#1	2.1009(14)	O(2)#1-Ni(1)-N(1)	88.44(6)		
Ni(1)-O(2)	2.0855(14)	O(2)-Ni(1)-N(1)	91.56(6)		
Ni(1)-O(2)#1	2.0856(14)	O(2)#1-Ni(1)-N(1)#1	91.56(6)		
Ni(1)-N(1)#1	2.1474(16)	O(2)-Ni(1)-N(1)#1	88.44(6)		
Ni(1)-N(1)	2.1473(16)	N(1)-Ni(1)-N(1)#1	180.00(6)		
Ni(2)-O(5)#2	2.0382(14)	O(5)#2-Ni(2)-O(5)#3	176.02(9)		
Ni(2)-O(5)#3	2.0382(14)	O(5)#2-Ni(2)-O(6)#4	92.81(6)		
Ni(2)-O(6)#4	2.1012(15)	O(5)#3-Ni(2)-O(6)#4	84.32(6)		
Ni(2)-O(6)	2.1013(15)	O(5)#2-Ni(2)-O(6)	84.32(6)		
Ni(2)-N(4)	2.1061(17)	O(5)#3-Ni(2)-O(6)	92.82(6)		
Ni(2)-N(4)#4	2.1061(17)	O(5)#2-Ni(2)-N(4)	91.97(6)		
O(1)-Ni(1)-O(1)#1	180.00(6)	O(5)#3-Ni(2)-N(4)	90.83(6)		
O(1)-Ni(1)-N(1)#1	89.70(6)	O(5)#3-Ni(2)-N(4)#4	91.97(6)		
O(1)#1-Ni(1)-N(1)#1	90.30(6)	O(5)#2-Ni(2)-N(4)#4	90.83(6)		
O(1)#1-Ni(1)-N(1)	89.70(6)	O(6)#4-Ni(2)-O(6)	88.03(9)		
O(1)-Ni(1)-N(1)	90.30(6)	O(6)#4-Ni(2)-N(4)	174.99(7)		
O(2)-Ni(1)-O(1)	63.27(6)	O(6)-Ni(2)-N(4)#4	174.99(7)		
O(2)#1-Ni(1)-O(1)#1	63.27(6)	O(6)#4-Ni(2)-N(4)#4	90.97(6)		
O(2)-Ni(1)-O(1)#1	116.73(6)	O(6)-Ni(2)-N(4)	90.97(6)		
O(2)#1-Ni(1)-O(1)	116.73(6)	N(4)-Ni(2)-N(4)#4	90.43(10)		

Symmetry transformations used to generate equivalent atoms: for 1: #1 3/2-x, -1/2+y, 3/2-z. #2 1-x, 1-y, -z. #3 3/2-x, 1/2+y, 1/2-z. #4 -1/2+x, 1/2-y, -1/2+z; for 2: #1 1/2-x, -1/2+y, +z. #2 +x, 3/2-y, -1/2+z; for 3: #1 1-x, 1-y, 1-z. #2 1-x, -y, 1-z. #3 3/2-x, 1/2-y, 1-z; for 4: #1 1-x, 1-y, 1-z. #2 1/2+x, 3/2+y, +z. #3 1/2-x, 3/2+y, 1/2-z. #4 1-x, +y, 1/2-z; for 5: #1 1/2-x, -1/2-y, 1-z. #2 1/2+x, 3/2+y, +z. #3 1/2-x, 3/2+y, 3/2-z. #4 1-x, +y, 3/2-z.

Table S2 Hydrogen bonds for 1-5 (Å and °).							
D-H···A	D····A	D-H	H····A	D-H···A			
Compound 1							
$O(7)$ -H(7A) \cdots O(5) ⁱ	2.7249	0.88	1.97	143			
O(7)-H(7B)····O(4) ⁱⁱ	2.6717	0.88	1.89	148			
	Compound 2						
O(6)-H(6B)····O(4) ⁱ	2.5994	0.79	1.85	160			
O(7)-H(7A)···O(4) ⁱⁱ	2.5942	0.85	1.78	159			
O(7)-H(7B)…O(4) ⁱⁱⁱ	2.8795	0.85	2.07	159			
	Compound 3						
N(4)- $H(4)$ ···O(4) ⁱ	2.7149	0.86	1.91	156			
O(6)-H(6)…N(5) ⁱⁱ	2.7610	0.82	1.98	159			
Compound 4							
O(6)-H(6A)···N(3) ⁱ	2.9151	0.87	2.07	162			
O(7)-H(7A)···O(4) ⁱⁱ	3.1744	0.85	2.49	139			
O(7)-H(7B)…O(6) ⁱⁱⁱ	2.8999	0.76	2.20	153			
Compound 5							
O(6)-H(6B)···N(3) ⁱ	2.9300	0.87	2.08	163			
O(7)-H(7A)····O(4) ⁱⁱ	3.1725	0.85	2.46	143			
O(7)-H(7B)…O(6) ⁱⁱ	2.8839	0.61	2.35	148			

Symmetry transformations used to generate equivalent atoms: for 1: i -1/2+x, -1/2+y, z. ii -x, -1+y, 1/2-z; for 2: i 1/2-x, -y, 1/2+z. ii 1/2+x, 1/2-y, -z. iii 1/2-x, 1/2+y, z.; for 3: i x, -y, 1/2+z. ii x, y, -1+z; for 4: i 1+x, 1-y, 1/2+z. ii 1/2-x, 1/2+y, 1/2-z. iii -1/2+x, 1/2+y, z; for 5: i 1/2-x, 1/2-y, 1-z. ii 1/2-x, 1/2+y, 1/2-z.

 Table S3 Coordination modes of the ligands in 1-5.

Fig. S1 View of a single 2D layer formed by tib ligands and Co atoms.

Fig. S2 (a) Perspective and simplified views of a hexagonal window with an orange lateral arm. (b) View of a single 2D layer formed by tib ligands and Ni atoms. (c) Every hexagonal void of each layer is pierced by one arm coming from above or below layers alternately.

Fig. S3 (a) Perspective and simplified views of a single tetragonal window. The Htpim and Hbtc ligands are highlighted by cerulean and purple lines with effective length respectively. (b) Schematic views of a single double-edged 2D network with two distinct dangling arms (left) and the mutual polythreading and interdigitation of three layers (right).

Compounds 4 & 5

Fig. S4 ORTEP diagram showing the coordination environment for Ni atoms in 5.

Fig. S5 (a) Perspective view of a single 3D net. (b) Side view of a single-stranded *meso*-helix. (c) Perspective (left) and schematic (right) views of the *meso*-helix.

Fig. S6 Perspective (a) and simplified (b) views of 3-fold 3D interpenetrating framework.

Fig. S7 The XRPD patterns for: (a) as-synthesized samples of 1, and (b) simulated one based on the single-crystal structure of 1.

Fig. S8 The XRPD patterns for: (a) as-synthesized samples of 2, and (b) simulated one based on the single-crystal structure of 2.

Fig. S9 The XRPD patterns for: (a) as-synthesized samples of 3, and (b) simulated one based on the single-crystal structure of 3.

Fig. S10 The XRPD patterns for: (a) as-synthesized samples of **4**, and (b) simulated one based on the single-crystal structure of **4**.

Fig. S11 The XRPD patterns for: (a) as-synthesized samples of 5, and (b) simulated one based on the single-crystal structure of 5.

Fig. S12 The TG-DSC curves of compound 1.

Fig. S14 The TG-DSC curves of compound 3.

Fig. S16 The TG-DSC curves of compound 5.

Fig. S19 The IR spectrum of compound 3.

Fig. S21 The IR spectrum of compound 5.

Wavenumber (cm⁻¹)