Synthesis, crystal structure, fluorescence and antimicrobial activity of a series of rare-earth complexes based on indolebutyric acid

Zhi-Nan Wang,^a Xue-Ting Xu,^a Xiao Lv,^b Feng-Ying Bai,^{a*} Shu-Qing Liu^{b*} and Yong-Heng Xing^a

^a College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029,

P. R. China. E-mail: baifengying2003@163.com

^b Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044,

P. R. China. E-mail: Lsqsmz@163.com

- Table S1 the selected bond lengths (Å) and angles (°) of complexes 1-3
- Table S2 the selected bond lengths (Å) and angles (°) of complexes 4-6
- Table S3 the selected bond lengths (Å) and angles (°) of complexes 7-10

Table S4 Bond distances (Å) and Angles (°) of Hydrogen Bonds in Complexes 1-10*

Table S5 Detailed attribution of IR (cm⁻¹) for complexes 6, 7, 8 and ligands

Fig S1-S10 The IR spectra of complexes 1-10

Table S6 The UV-vis spectra assignments of complexes 1-10

- Fig S11-S20 The UV-vis spectra of complexes 1-10
- Fig S21-S23 Room-temperature solid-state photoluminescence spectrum of complexes 3, 5 and 8
- Fig S24-S33 The TG curve of complexes 1-10
- Fig S34-S43 The PXRD spectra of complexes 1-10
- Fig S44-S63 The structure of complexes 1, 2, 3, 4, 5, 9 and 10
- Fig S64-S79 The antimicrobial activity of complexes 1-10 against G.S, E.C, P.A and B.S

Complex 1							
La-O5	2.434(5)	La-O4 ^{#1}	2.463(5)	La-O6 ^{#1}	2.484(5)		
La-O3	2.562(6)	La-O1	2.585(5)	La-O2	2.603(5)		
La-O4	2.666(5)	La-N1	2.708(4)	La-N2	2.727(4)		
O5-La-O4 ^{#1}	74.15(17)	O5-La-O6 ^{#1}	135.80(16)	O4 ^{#1} -La-O6 ^{#1}	74.94(2)		
O5-La-O3	78.8(2)	O4 ^{#1} -La-O3	123.90(17)	O6 ^{#1} -La-O3	93.3(2)		
O5-La-O1	75.78(17)	O4#1-La-O1	75.51(17)	O6#1-La-O1	124.90(17)		
O3-La-O1	141.7(2)	O5-La-O2	125.80(17)	O4 ^{#1} -La-O2	91.46(17)		
O6 ^{#1} -La-O2	85.59(17)	O3-La-O2	143.08(19)	O1-La-O2	50.04(16)		
O5-La-O4	69.75(17)	O4 ^{#1} -La-O4	75.12(17)	O6 ^{#1} -La-O4	72.31(16)		
O3-La-O4	49.43(16)	O1-La-O4	139.47(16)	O2-La-O4	156.39(15)		
O5-La-N1	80.77(14)	O4#1-La-N1	140.70(14)	O6#1-La-N1	140.74(14)		
O3-La-N1	78.74(16)	O1-La-N1	69.23(14)	O2-La-N1	79.14(14)		
O4-La-N1	123.42(13)	O5-La-N2	134.39(15)	O4#1-La-N2	151.46(14)		
O6#1-La-N2	80.42(14)	O3-La-N2	71.13(16)	O1-La-N2	108.33(14)		
O2-La-N2	72.31(14)	O4-La-N2	110.87(13)	N1-La-N2	60.55(8)		
Complex 2							
Pr(1)-O(5)	2.388(3)	Pr(1)-O(4)#1	2.422(3)	Pr(1)-O(6)#1	2.445(3)		
Pr(1)-O(3)	2.521(4)	Pr(1)-O(2)	2.546(3)	Pr(1)-O(1)	2.559(3)		
Pr(1)-O(4)	2.627(3)	Pr(1)-N(1)	2.646(4)	Pr(1)-N(2)	2.687(4)		
O(5)-Pr(1)-O(4) ^{#1}	74.44(12)	O(5)-Pr(1)-O(6) ^{#1}	136.43(11)	O(4) ^{#1} -Pr(1)-O(6) ^{#1}	75.25(11)		
O(5)-Pr(1)-O(3)	79.33(14)	O(4) ^{#1} -Pr(1)-O(3)	124.38(11)	O(6) ^{#1} -Pr(1)-O(3)	92.96(14)		
O(5)-Pr(1)-O(2)	75.21(11)	O(4) ^{#1} -Pr(1)-O(2)	74.99(11)	O(6) ^{#1} -Pr(1)-O(2)	124.99(12)		
O(3)-Pr(1)-O(2)	141.86(14)	O(5)-Pr(1)-O(1)	126.09(12)	$O(4)^{\#1}$ -Pr(1)-O(1)	91.79(11)		
O(6) ^{#1} -Pr(1)-O(1)	85.23(12)	O(3)-Pr(1)-O(1)	142.11(12)	O(2)-Pr(1)-O(1)	50.93(11)		
O(5)-Pr(1)-O(4)	69.90(11)	O(4) ^{#1} -Pr(1)-O(4)	74.88(11)	O(6) ^{#1} -Pr(1)-O(4)	72.47(11)		
O(3)-Pr(1)-O(4)	50.07(10)	O(2)-Pr(1)-O(4)	138.66(10)	O(1)-Pr(1)-O(4)	156.21(11)		
O(5)-Pr(1)-N(1)	80.30(12)	O(4) ^{#1} -Pr(1)-N(1)	140.64(12)	O(6) ^{#1} -Pr(1)-N(1)	140.52(12)		
O(3)-Pr(1)-N(1)	78.51(13)	O(2)-Pr(1)-N(1)	69.63(13)	O(1)-Pr(1)-N(1)	79.20(13)		
O(4)-Pr(1)-N(1)	123.50(12)	O(5)-Pr(1)-N(2)	134.58(12)	$O(4)^{\#1}$ -Pr(1)-N(2)	150.97(12)		
O(6) ^{#1} -Pr(1)-N(2)	79.44(11)	O(3)-Pr(1)-N(2)	70.49(13)	O(2)-Pr(1)-N(2)	109.42(11)		
O(1)-Pr(1)-N(2)	71.99(12)	O(4)-Pr(1)-N(2)	110.73(11)	N(1)-Pr(1)-N(2)	61.30(12)		
		Complex	x 3				
Eu(1)-O(6)	2.337(4)	Eu(1)-O(3)#1	2.356(3)	Eu(1)-O(5) ^{#1}	2.393(3)		
Eu(1)-O(4)	2.464(6)	Eu(1)-O(1)	2.506(4)	Eu(1)-O(2)	2.507(4)		
Eu(1)-N(2)	2.596(4)	Eu(1)-O(3)	2.589(4)	Eu(1)-N(1)	2.628(4)		
O(6)-Eu(1)-O(3) ^{#1}	74.92(12)	O(6)-Eu(1)-O(5) ^{#1}	136.97(12)	O(3) ^{#1} -Eu(1)-O(5) ^{#1}	75.20(12)		
O(6) -Eu(1)-O(4)	78.90(14)	O(3) ^{#1} -Eu(1)-O(4)	124.61(13)	O(5) ^{#1} -Eu(1)-O(4)	93.58(14)		

Table S1 the selected bond lengths (Å) and angles (°) of complexes 1-3 $\,$

O(6)-Eu(1)-O(1)	126.88(12)	O(3) ^{#1} -Eu(1)-O(1)	91.95(13)	O(5) ^{#1} -Eu(1)-O(1)	84.26(12)
O(4)-Eu(1)-O(1)	141.62(14)	O(6)-Eu(1)-O(2)	75.36(13)	O(3) ^{#1} -Eu(1)-O(2)	75.01(12)
O(5) ^{#1} -Eu(1)-O(2)	124.64(12)	O(4)-Eu(1)-O(2)	141.56(14)	O(1)-Eu(1)-O(2)	51.59(12)
O(6)-Eu(1)-N(2)	79.60(13)	O(3)#1-Eu(1)-N(2)	140.69(13)	O(5)-Eu(1)-N(2)	140.63(13)
O(4)-Eu(1)-N(2)	77.83(14)	O(1)-Eu(1)-N(2)	79.92(14)	O(2)-Eu(1)-N(2)	69.86(13)
O(6)-Eu(1)-O(3)	70.01(12)	O(3) ^{#1} -Eu(1)-O(3)	74.24(13)	O(5) ^{#1} -Eu(1)-O(3)	72.53(12)
O(4)-Eu(1)-O(3)	51.00(12)	O(1) -Eu(1)-O(3)	155.27(12)	O(2)-Eu(1)-O(3)	138.35(12)
N(2)-Eu(1)-O(3)	123.68(13)	O(6)-Eu(1)-N(1)	134.84(13)	O(3) ^{#1} -Eu(1)-N(1)	150.19(13)
O(5)-Eu(1)-N(1)	78.35(13)	O(4)-Eu(1)-N(1)	70.25(14)	O(1)-Eu(1)-N(1)	71.81(13)
O(2)-Eu(1)-N(1)	110.21(13)	N(2)-Eu(1)-N(1)	62.51(14)	O(3)-Eu(1)-N(1)	110.50(12)

Complex 1: #1 -x,-y+1,-z+2; complex 2: #1 -x+2,-y,-z+1; complex 3: #1: -x+2,-y+1,-z+1

 Table S2 the selected bond lengths (Å) and angles (°) of complexes 4-6

Complex 4						
Gd(1)-O(5)	2.340(7)	Gd(1)-O(4)#1	2.347(6)	Gd(1)-O(6) ^{#1}	2.382(5)	
Gd(1)-O(3)	2.465(7)	Gd(1)-O(1)	2.490(6)	Gd(1)-O(2)	2.499(6)	
Gd(1)-O(4)	2.581(5)	Gd(1)-N(2)	2.584(6)	Gd(1)-N(1)	2.636(9)	
O(5)-Gd(1)-O(4)#1	74.7(2)	O(5)-Gd(1)-O(6)#1	137.3(2)	O(4)#1-Gd(1)-O(6)#1	75.2(2)	
O(5)-Gd(1)-O(3)	79.1(3)	O(4)#1-Gd(1)-O(3)	124.7(2)	O(6) ^{#1} -Gd(1)-O(3)	94.0(2)	
O(5)-Gd(1)-O(1)	126.5(2)	O(4)#1-Gd(1)-O(1)	91.9(2)	O(6) ^{#1} -Gd(1)-O(1)	84.1(2)	
O(3)-Gd(1)-O(1)	141.7(3)	O(5)-Gd(1)-O(2)	74.5(2)	O(4) ^{#1} -Gd(1)-O(2)	74.8(2)	
O(6)#1-Gd(1)-O(2)	124.7(2)	O(3)-Gd(1)-O(2)	141.1(3)	O(1)-Gd(1)-O(2)	52.0(2)	
O(5)-Gd(1)-O(4)	70.5(2)	O(4)#1-Gd(1)-O(4)	73.9(2)	O(6) ^{#1} -Gd(1)-O(4)	72.4(2)	
O(3)-Gd(1)-O(4)	51.49(19)	O(1)-Gd(1)-O(4)	154.87(18)	O(2)-Gd(1)-O(4)	137.8(2)	
O(5)-Gd(1)-N(2)	78.9(2)	O(4)#1-Gd(1)-N(2)	140.1(2)	O(6)#1-Gd(1)-N(2)	141.2(3)	
O(3)-Gd(1)-N(2)	77.7(2)	O(1)-Gd(1)-N(2)	80.2(2)	O(2)-Gd(1)-N(2)	69.6(2)	
O(4)-Gd(1)-N(2)	123.9(2)	O(5)-Gd(1)-N(1)	134.9(2)	O(4)#1-Gd(1)-N(1)	150.3(2)	
O(6)#1-Gd(1)-N(1)	78.0(2)	O(3)-Gd(1)-N(1)	69.7(3)	O(1)-Gd(1)-N(1)	72.7(2)	
O(2)-Gd(1)-N(1)	111.3(2)	O(4)-Gd(1)-N(1)	109.9(2)	N(2)-Gd(1)-N(1)	63.5(2)	
		Complex	x 5			
Tb(1)-O(6) ^{#1}	2.324(7)	Tb(1)-O(3) ^{#1}	2.333(7)	Tb(1)-O(5)	2.353(6)	
Tb(1)-O(4)	2.439(8)	Tb(1)-O(1)	2.446(6)	Tb(1)-O(2)	2.491(7)	
Tb(1)-N(2)	2.562(8)	Tb(1)-O(3)	2.594(9)	Tb(1)-N(1)	2.596(6)	
O(6) ^{#1} -Tb(1)-O(3) ^{#1}	75.3(2)	O(6) ^{#1} -Tb(1)-O(5)	137.9(2)	O(3) ^{#1} -Tb(1)-O(5)	75.5(2)	
O(6)#1-Tb(1)-O(4)	79.2(3)	O(3) ^{#1} -Tb(1)-O(4)	125.6(2)	O(5) -Tb(1)-O(4)	94.1(2)	
O(6) ^{#1} -Tb(1)-O(1)	127.1(2)	O(3) ^{#1} -Tb(1)-O(1)	91.4(2)	O(5) -Tb(1)-O(1)	83.2(2)	
O(4) -Tb(1)-O(1)	141.0(3)	O(6) ^{#1} -Tb(1)-O(2)	74.8(2)	O(3) ^{#1} -Tb(1)-O(2)	73.9(2)	
O(5)-Tb(1)-O(2)	124.1(2)	O(4)-Tb(1)-O(2)	141.6(2)	O(1)-Tb(1)-O(2)	52.4(2)	
O(6)#1-Tb(1)-N(2)	79.1(3)	O(3)#1-Tb(1)-N(2)	140.0(2)	O(5)-Tb(1)-N(2)	140.5(3)	
O(4)-Tb(1)-N(2)	77.9(2)	O(1)-Tb(1)-N(2)	79.9(2)	O(2)-Tb(1)-N(2)	69.9(3)	
O(6) ^{#1} -Tb(1)-O(3)	70.3(2)	O(3) ^{#1} -Tb(1)-O(3)	74.7(2)	O(5)-Tb(1)-O(3)	73.2(2)	
O(4)-Tb(1)-O(3)	51.6(2)	O(1)-Tb(1)-O(3)	154.9(2)	O(2)-Tb(1)-O(3)	137.7(2)	
N(2)-Tb(1)-O(3)	124.1(2)	O(6) ^{#1} -Tb(1)-N(1)	135.3(3)	O(3) ^{#1} -Tb(1)-N(1)	149.3(2)	

O(5)-Tb(1)-N(1)	76.9(2)	O(4)-Tb(1)-N(1)	69.4(3)	O(1)-Tb(1)-N(1)	72.2(3)		
O(2)-Tb(1)-N(1)	112.0(2)	N(2)-Tb(1)-N(1)	64.1(3)	O(3)-Tb(1)-N(1)	109.6(2)		
Complex 6							
Yb-O5	2.253(2)	Yb-O4 ^{#1}	2.274(2)	Yb-O6 ^{#1}	2.307(2)		
Yb-O3	2.368(2)	Yb-O2	2.411(2)	Yb-O1	2.457(2)		
Yb-N1	2.507(3)	Yb-N2	2.562(3)	Yb-O4	2.573(2)		
O5-Yb-O4 ^{#1}	75.53(9)	O5-Yb-O6 ^{#1}	137.32(8)	O4 ^{#1} -Yb-O6 ^{#1}	75.85(8)		
O5-Yb-O3	78.98(10)	O4#1-Yb-O3	124.98(8)	O6 ^{#1} -Yb-O3	92.43(10)		
O5-Yb-O2	127.89(8)	O4#1-Yb-O2	91.37(9)	O6 ^{#1} -Yb-O2	83.63(9)		
O3-Yb-O2	141.36(8)	O5-Yb-O1	74.84(8)	O4 ^{#1} -Yb-O1	74.09(8)		
O6 ^{#1} -Yb-O1	125.48(9)	O3-Yb-O1	141.93(9)	O2-Yb-O1	53.13(8)		
O5-Yb-N1	78.45(9)	O4#1-Yb-N1	139.72(9)	O6 ^{#1} -Yb-N1	141.07(8)		
O3-Yb-N1	78.38(9)	O2-Yb-N1	80.93(9)	O1-Yb-N1	69.71(9)		
O5-Yb-N2	135.19(9)	O4 ^{#1} -Yb-N2	149.15(9)	O6 ^{#1} -Yb-N2	76.64(8)		
O3-Yb-N2	69.79(9)	O2-Yb-N2	71.91(9)	O1-Yb-N2	112.02(8)		
N1-Yb-N2	64.63(9)	O5-Yb-O4	69.81(8)	O4 ^{#1} -Yb-O4	73.83(9)		
O6 ^{#1} -Yb-O4	72.22(8)	O3-Yb-O4	51.67(8)	O2-Yb-O4	154.01(8)		
O1-Yb-O4	136.88(9)	N1-Yb-O4	124.12(8)	N2-Yb-O4	110.35(8)		

Complex 4: #1: -x+1,-y+2,-z+2; complex 5: #1: -x+2,-y+2,-z; complex 6: #1: 1-x, 1-y, 1-z

Table S3 the selected bond lengths (Å) and angles (°) of complexes 7-10

Complex 7						
Sm(1)-O(2) ^{#1}	2.350(4)	Sm(1)-O(4)#1	2.372(4)	Sm(1)-O(1)	2.392(4)	
Sm(1)-O(3)	2.483(4)	Sm(1)-O(4)	2.588(4)	Sm(1)-N(3)	2.621(5)	
Sm(1)-N(2)	2.658(5)	Sm(1)-N(1)	2.665(5)	Sm(1)-N(4)	2.666(5)	
O(2) ^{#1} -Sm(1)-O(4) ^{#1}	76.47(13)	O(2) ^{#1} -Sm(1)-O(1)	138.79(13)	O(4) ^{#1} -Sm(1)-O(1)	74.85(14)	
O(2) ^{#1} -Sm(1)-O(3)	96.35(15)	O(4) ^{#1} -Sm(1)-O(3)	125.86(14)	O(1)-Sm(1)-O(3)	77.63(14)	
O(2)#1-Sm(1)-O(4)	71.13(13)	O(4) ^{#1} -Sm(1)-O(4)	76.77(15)	O(1)-Sm(1)-O(4)	73.93(13)	
O(3)-Sm(1)-O(4)	51.00(13)	O(2) ^{#1} -Sm(1)-N(3)	137.12(14)	O(4)#1-Sm(1)-N(3)	141.48(14)	
O(1)-Sm(1)-N(3)	81.78(14)	O(3)-Sm(1)-N(3)	76.61(15)	O(4)-Sm(1)-N(3)	125.41(14)	
O(2) ^{#1} -Sm(1)-N(2)	124.03(16)	O(4) ^{#1} -Sm(1)-N(2)	74.86(15)	O(1)-Sm(1)-N(2)	75.30(15)	
O(3)-Sm(1)-N(2)	139.18(15)	O(4)-Sm(1)-N(2)	142.47(14)	N(3)-Sm(1)-N(2)	69.78(16)	
O(2) ^{#1} -Sm(1)-N(1)	74.50(15)	O(4) ^{#1} -Sm(1)-N(1)	94.09(15)	O(1)-Sm(1)-N(1)	136.23(15)	
O(3)-Sm(1)-N(1)	136.29(15)	O(4)-Sm(1)-N(1)	145.61(14)	N(3)-Sm(1)-N(1)	81.98(16)	
N(2)-Sm(1)-N(1)	60.96(15)	O(2) ^{#1} -Sm(1)-N(4)	75.52(14)	O(4)#1-Sm(1)-N(4)	149.76(15)	
O(1)-Sm(1)-N(4)	135.07(15)	O(3)-Sm(1)-N(4)	68.78(15)	O(4)-Sm(1)-N(4)	104.43(14)	
N(3)-Sm(1)-N(4)	62.39(15)	N(2)-Sm(1)-N(4)	112.48(15)	N(1)-Sm(1)-N(4)	67.55(16)	
Complex 8						

Eu(1)-O(6)#1	2.355(3)	Eu(1)-O(4) ^{#1}	2.377(3)	Eu(1)-O(5)	2.401(3)	
Eu(1)-O(1)	2.441(3)	Eu(1)-O(3)	2.488(3)	Eu(1)-O(2)	2.547(3)	
Eu(1)-N(2)	2.618(4)	Eu(1)-O(4)	2.618(3)	Eu(1)-N(1)	2.621(3)	
$O(6)^{\#1}$ -Eu(1)-O(4	1) ^{#1} 74 34(9)	O(6) ^{#1} -Eu(1)-O(5)	136 02(9)	$O(4)^{\#1}$ -Eu(1)-O(5) $77.34(9)$	
$O(6)^{\#1}$ Ex(1) $O(6)^{\#1}$	$(1) \qquad 76.51(10)$	$O(4)^{\#1}$ Ev(1) $O(1)$	91 <i>46</i> (10)	$O(5) E_{2}(1) O(1)$	121 16(10)	
O(0) ²¹ -Eu(1)-O(1) /0.51(10)	O(4) ²² -Eu(1)-O(1)	81.40(10)	O(5)-Eu(1)-O(1)	131.10(10)	
$O(6)^{\#1}$ -Eu(1)-O(3) 87.58(10)	$O(4)^{\#1}$ -Eu(1)-O(3)	125.43(9)	O(5)-Eu(1)-O(3)	82.16(10)	
O(1)-Eu(1)-O(3	3) 143.90(10)	O(6) ^{#1} -Eu(1)-O(2)	125.97(10)	O(4) ^{#1} -Eu(1)-O(2) 81.27(10)	
O(5)-Eu(1)-O(2	2) 81.03(10)	O(1)-Eu(1)-O(2)	52.37(10)	O(3)-Eu(1)-O(2)	143.88(10)	
O(6)#1-Eu(1)-N(2) 137.87(10)	O(4)#1-Eu(1)-N(2)	147.27(11)	O(5)-Eu(1)-N(2)	78.28(10)	
O(1)-Eu(1)-N(2	2) 98.77(11)	O(3)-Eu(1)-N(2)	71.78(11)	O(2)-Eu(1)-N(2)	73.62(11)	
O(6) ^{#1} -Eu(1)-O((4) 69.31(9)	O(4) ^{#1} -Eu(1)-O(4)	74.76(10)	O(5)-Eu(1)-O(4)	71.21(9)	
O(1)-Eu(1)-O(4	4) 142.39(10)	O(3)-Eu(1)-O(4)	50.75(9)	O(2)-Eu(1)-O(4)	146.49(9)	
N(2)-Eu(1)-O(4	4) 116.97(10)	O(6)#1-Eu(1)-N(1)	76.27(10)	O(4)#1-Eu(1)-N(1) 144.03(10)	
O(5)-Eu(1)-N(1	1) 138.58(11)	O(1)-Eu(1)-N(1)	71.86(11)	O(3)-Eu(1)-N(1)	72.97(10)	
O(2)-Eu(1)-N(1	1) 100.01(11)	N(2)-Eu(1)-N(1)	62.84(11)	O(4)-Eu(1)-N(1)	113.16(10)	
Complex 9						
Tb-O6 ^{#1}	2.326(4)	Tb-O4 ^{#1}	2.355(4)	Tb-O5	2.372(4)	
Tb-O2	2.423(4)	Tb-O3	2.459(4)	Tb-O1	2.522(4)	
Tb-N1	2.582(4)	Tb-N2	2.601(4)	Tb-O4	2.616(4)	
O6#1-Tb-O4#1	74.57(13)	O6#1-Tb-O5	136.19(12)	O4 ^{#1} -Tb-O5	77.44(12)	
O6 ^{#1} -Tb-O2	76.72(14)	O4 ^{#1} -Tb-O2	81.35(13)	O5-Tb-O2	131.00(14)	
O6#1-Tb-O3	87.33(14)	O4#1-Tb-O3	125.94(12)	O5-Tb-O3	82.55(13)	
O2-Tb-O3	143.54(14)	O6#1-Tb-O1	126.20(14)	O4#1-Tb-O1	80.47(13)	
O5-Tb-O1	80.38(14)	O2-Tb-O1	52.65(14)	O3-Tb-O1	144.07(14)	
O6#1-Tb-N1	138.27(14)	O4#1-Tb-N1	146.52(14)	O5-Tb-N1	77.98(14)	
O2-Tb-N1	98.24(15)	O3-Tb-N1	72.35(14)	O1-Tb-N1	73.28(15)	
O6#1-Tb-N2	75.93(13)	O4#1-Tb-N2	143.43(14)	O5-Tb)-N2	139.05(14)	
O2-Tb-N2	71.19(15)	O3-Tb-N2	73.22(14)	O1-Tb-N2	100.35(14)	
N1-Tb-N2	63.56(15)	O6 ^{#1} -Tb-O4	69.41(12)	O4 ^{#1} -Tb-O4	74.98(14)	
O5-Tb-O4	71.21(12)	O2-Tb-O4	142.64(13)	O3-Tb-O4	51.02(12)	
O1-Tb-O4	145.69(12)	N1-Tb-O4	117.41(14)	N2-Tb-O4	113.66(13)	
		Complex	x 10			
Yb-O5	2.256(7)	Yb-O4 ^{#1} 2	2.258(6)	Yb-O3	2.293(7)	
Yb-O6 ^{#1}	2.273(6)	Yb-O1 2	2.417(6)	Yb-O2	2.475(6)	
Yb-N2	2.484(9)	Yb-N1 2	2.541(7)			
O5-Yb-O4 ^{#1}	81.4(3)	O5-Yb-O3 7	73.4(2)	O4 ^{#1} -Yb-O3	126.8(3)	
O5-Yb-O6 ^{#1}	127.2(2)	O4 ^{#1} -Yb-O6 ^{#1}	76.2(2)	O3-Yb-O6 ^{#1}	83.0(3)	
O5-Yb-O1	95.0(2)	O4 ^{#1} -Yb-O1	48.5(2)	O3-Yb-O1	80.9(2)	
O6 ^{#1} -Yb-O1	127.3(2)	O5-Yb-O2	37.5(2)	O4 ^{#1} -Yb-O2	140.7(3)	

O3-Yb-O2	73.8(2)	O6 ^{#1} -Yb-O2	73.9(2)	O1-Yb-O2	53.5(2)
O5-Yb-N2	137.8(2)	O4#1-Yb-N2	79.1(3)	O3-Yb-N2	146.2(2)
O6#1-Yb-N2	83.3(3)	O1-Yb-N2	83.2(2)	O2-Yb-N2	72.8(2)
O5-Yb-N1	73.9(3)	O4#1-Yb-N1	74.5(2)	O3-Yb-N1	136.7(3)
O6 ^{#1} -Yb-N1	140.0(3)	O1-Yb-N1	74.5(2)	O2-Yb-N1	115.4(2)
N2-Yb-N1	65.0(3)				

Complex 7: #1 -x,-y,-z+1; complex 8: #1 -x,-y,-z+1; complex 9: #1 1-x, 1-y, 1-z; complex 10: #1 -x+1,-y+1,-z

Table S4 Bon	d distances (Å) and	d Angles (°) of Hydi	ogen Bonds in Com	olexes 1-10*
D-H···A	d (D-H) Å	d (H···A) Å	d (D···A) Å	∠DHA(°)
		Complex 1		
N3-H3AO9#2	0.86	2.19	3.027	164.3
N5-H5AO1W#3	0.86	2.02	2.825(11)	155.8
N7-H7AO2	0.86	1.95	2.705(8)	146.7
O1W-H1AO1#4	0.822(10)	2.03(4)	2.816(9)	161(9)
O1W-H1BO7	0.823(10)	2.31(8)	2.987(15)	140(11)
O10-H10BO8 ^{#5}	0.82	2.29	3.02(3)	147.3
C10-H10AO6 ^{#6}	0.93	2.59	3.272(10)	130.1
C56-H56AO7#7	0.93	2.55	3.307(13)	139.3
		Complex 2		
O2W-H2WAO8	0.85	2.25	2.989(10)	144.9
O2W-H2WCO2 ^{#2}	0.85	2.05	2.856(5)	157.1
O1W-H1WAO7#3	0.85	2.33	3.119(15)	155.5
N3-H3AO9#4	0.86	2.15	2.992(10)	165.0
N4-H4AN3 ^{#2}	0.86	2.38	3.199(8)	160.5
N5-H5O2W ^{#5}	0.86	2.01	2.809(6)	154.4
N7-H7O1 ^{#6}	0.86	1.96	2.714(5)	146.3
C6-H6CO3#6	0.93	2.56	3.254(6)	131.8
С56-Н56АО8	0.93	2.55	3.298(9)	138.2
		Complex 3		
O1W-H1A…O7	0.822(10)	2.220(14)	3.041(10)	176(8)
O2W-H2WB…O8	0.85	2.56	3.133(12)	125.7
N3-H3-O9#2	0.86	2.18	3.024(9)	165.9
N5-H5…O1W ^{#3}	0.86	2.02	2.829(8)	156.6
N7-H7…O1#4	0.94(6)	1.89(7)	2.722(6)	147(6)
C56-H56A-07#5	0.93	2.55	3.319(10)	140.5

Complex 4					
O1W-H1WA…O7 ^{#2}	0.85	2.45	3.060(18)	129.1	
N3-H3A…O9#3	0.86	2.16	2.995(17)	164.3	
N5-H5A…O1W ^{#4}	0.86	2.02	2.834(15)	158.1	
N6-H6…O1 ^{#5}	0.86	1.98	2.740(12)	146.1	
C51-H51A…O7	0.93	2.55	3.32(2)	140.4	
		Complex 5			
N3-H3A07 ^{#2}	0.86	2.17	3.006(16)	165.5	
N5-H5AO2W	0.86	1.99	2.822(14)	162.3	
N7-H7O1	0.86	2.00	2.745(12)	145.1	
C56-H56AO9	0.93	2.56	3.332(18)	141.1	
		Complex 6			
N3-H3AO9#2	0.86	2.18	3.018(7)	165.9	
N5-H5AO1W ^{#3}	0.86	1.99	2.809(5)	158.5	
N7-H7O2	0.86	1.99	2.733(4)	144.8	
C56-H56AO7#4	0.93	2.53	3.318(7)	142.4	
		Complex 7			
N5-H5A…O6 ^{#2}	0.86	2.12	2.965(10)	165.5	
N6-H6A…O6 ^{#3}	0.86	2.12	2.944(10)	159.9	
C17-H17A…O3 ^{#4}	0.93	2.59	3.304(9)	134.3	
		Complex 8			
N3-H3A…O3 ^{#2}	0.86	2.05	2.863(5)	158	
N4-H4A…O2 ^{#3}	0.86	2.17	2.983(5)	158	
		Complex 9			
N3-H3A…O3 ^{#2}	0.86	2.05	2.857(3)	157	
N4-H4A…O1 ^{#3}	0.86	2.17	2.976(3)	157	
		Complex 10			
N4-H4A…O2 ^{#2}	0.86	2.36	3.015(9)	133.6	
N5-H5A…O1#3	0.86	2.03	2.828(11)	153.2	
C30-H30A…O3#4	0.93	2.46	3.342(11)	159.2	

*Symmetry transformation used to generate equivalent atoms: For complex 1: #2: x, y-1, z #3: x-1, y-1, z+1 #4: 1x, 1-y, -z #5: 2-x, 1-y, -z #6: -x, 1-y,1-z #7: 1-x, 2-y, -z; for complex 2: #2: -x+1, -y+1, -z+1 #3: -x+1, -y+1, -z #4: x, y, z+1 #5: x+1, y, z #6: -x+1, -y, -z+1; for complex 3: #2: -x+1, -y+2, -z+2 #3: -x+2, -y+2, -z+1 #4: -x+1, -y+1, -z+1 #5: 1-x, 2-y, 1-z; for complex **4**: #2: -x+1, -y+1, -z+1 #3: x+1, y, z #4: -x+1, -y+1, -z+2 #5: -x+1, -y+2, -z+1; for complex **5**: #2: -x+1, -y+2, -z+1; for complex **6**: #2: x-1, y+1, z+1 #3: x, y+1, z #4: -x+1, -y, -z+1; for complex **7**: #2: 1+x, y, 1+z #3: x, y, 1+z #4: 1-x, 1-y, 1-z; for complex **8**: #2: 1/2-x, y-1/2, 1/2-z #3: 1/2-x, y+1/2, 3/2-z; for complex **9**: #2: 1/2-x, y-1/2, 1/2-z #3: 1/2-x, y+1/2, 3/2-z; for complex **10**: #2: -x, 1-y, -z #3: 1-x, -y, -z.

complex	6	7	8	IBA	phen
v _{N-H}	3407	3406	3416	3393	
V _{Ar-H}	3057	3057	3048	3037	3060
V-(CH2)-	2930,2869	2929,2869	2947,2826	2911,2874	_
v_{asCOO} -	1586	1586	1579	1696	_
V _s coo-	1429	1425	1426	1456	_
$v_{C=N}$	1516	1518	1516	1554	1586
$v_{C=C}$	1496	1496	1492	1488	1504
V _{NO3} -	1385	1385	_	_	_
v_{C-C}	1190	1190	1195	1163	1138
v_{C-N}	1102	1102	1099	1090	1090
V _{C-O}	1029	1030	1031	1031	_
δ_{Ar-H}	845,746,731	843,746,727	864,773,746	842,763,741	835-739
v_{Ln-O}	429	429	421	_	_

Table S5 Detailed attribution of IR (cm⁻¹) for complexes 6, 7, 8 and ligands

Fig S1 The IR spectrum of complex 1

Fig S2 The IR spectrum of complex ${\bf 2}$

Fig S3 The IR spectrum of complex $\mathbf{3}$

Fig S4 The IR spectrum of complex 4

Fig S5 The IR spectrum of complex 5

Fig S6 The IR spectrum of complex 6

Fig S7 The IR spectrum of complex 7

Fig S8 The IR spectrum of complex 8

Fig S9 The IR spectrum of complex 9

Fig S10 The IR spectrum of complex $\mathbf{10}$

complex	λ / nm	λ / nm	λ / nm	λ / nm
1	448(absorption of IBA)	258, 214(π→π*)		
2	$1590({}^{3}H_{4} \rightarrow {}^{3}F_{3})$	$1478({}^{3}H_{4} \rightarrow {}^{3}F_{4})$	$1104({}^{3}\mathrm{H_{1}}{\rightarrow}{}^{3}\mathrm{G_{4}})$	$590(^{3}\text{H}_{4}\rightarrow^{3}\text{D}_{2})$
	$462({}^{3}\mathrm{H}_{4}{\rightarrow}{}^{3}\mathrm{P}_{1})$	$448(^{3}\text{H}_{4}\rightarrow ^{3}\text{P}_{2})$	260, 214(π→π*)	
3	462(absorption of IBA)	260, 218(π→π*)		
4	433(absorption of IBA)	293, 217(π→π*)		
5	458(absorption of IBA)	262, 214(π→π*)		
6	$964({}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2})$	448(absorption of IBA)	260, 214(π→π*)	
7	$1668(^{6}H_{5/2}\rightarrow ^{6}F_{1/2})$	$1579(^{6}H_{5/2}\rightarrow ^{6}H_{15/2})$	$1517(^{6}H_{5/2} \rightarrow ^{6}F_{3/2})$	$1401(^{6}H_{5/2}\rightarrow ^{6}F_{5/2})$
	$1249(^{6}H_{5/2}\rightarrow ^{6}F_{7/2})$	$1089(^{6}H_{5/2}\rightarrow ^{6}F_{9/2})$	$946(^{6}H_{5/2}\rightarrow ^{6}F_{11/2})$	$427(^{6}H_{5/2}\rightarrow ^{4}F_{7/2})$
	309, 264, 216(π→π*)			
8	$350(\pi \rightarrow \pi^*)$			
9	460(absorption of IBA)	263, 214(π→π*)		
10	$964({}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2})$	354,260,214(π→π*)		

Table S6 The UV-vis spectra assignments of complexes 1-10

Fig S11 The UV-vis spectrum of complex $\mathbf{1}$

Fig S12 The UV-vis spectrum of complex $\mathbf{2}$

Fig S13 The UV-vis spectrum of complex 3

Fig S14 The UV-vis spectrum of complex 4

Fig S15 The UV-vis spectrum of complex 5

Fig S16 The UV-vis spectrum of complex 6

Fig S17 The UV-vis spectrum of complex 7

Fig S18 The UV-vis spectrum of complex 8

Fig S19 The UV-vis spectrum of complex 9

Fig S20 The UV-vis spectrum of complex 10

Fig. S21 Room-temperature solid-state photoluminescence spectrum of complex 3

Fig. S22 Room-temperature solid-state photoluminescence spectrum of complex 5

Fig. S23 Room-temperature solid-state photoluminescence spectrum of complex 8

Fig S24 The TG curve of complex 1

Fig S25 The TG curve of complex $\mathbf{2}$

Fig S26 The TG curve of complex 3

Fig S27 The TG curve of complex 4

Fig S28 The TG curve of complex 5

Fig S29 The TG curve of complex 6

Fig S30 The TG curve of complex 7

Fig S31 The TG curve of complex 8

Fig S32 The TG curve of complex 9

Fig S33 The TG curve of complex ${\bf 10}$

Fig S34 The simulated PXRD pattern (a) and measured PXRD spectrum (b) of complex 1

Fig S35 The simulated PXRD pattern (a) and measured PXRD spectrum (b) of complex 2

Fig S36 The simulated PXRD pattern (a) and measured PXRD spectrum (b) of complex 3

Fig S37 The simulated PXRD pattern (a) and measured PXRD spectrum (b) of complex 4

Fig S38The simulated PXRD pattern (a) and measured PXRD spectrum (b) of complex 5

Fig S39 The simulated PXRD pattern (a) and measured PXRD spectrum (b) of complex 6

Fig S40 The simulated PXRD pattern (a) and measured PXRD spectrum (b) of complex 7

Fig S41 The simulated PXRD pattern (a) and measured PXRD spectrum (b) of complex 8

Fig S42 The simulated PXRD pattern (a) and measured PXRD spectrum (b) of complex 9

Fig S43 The simulated PXRD pattern (a) and measured PXRD spectrum (b) of complex 10

Fig S44 The unit structure of complex 1(symmetry codes: #1 -x,-y+1,-z+2)

Fig S45 The 1D chain structure connected by hydrogen bonds of complex 1

Fig S46 The 2D sheet structure connected by hydrogen bonds of complex 1

Fig S47 The unit structure of complex 2(symmetry codes: #1 -x+2,-y,-z+1)

Fig S48 The 1D chain structure connected by hydrogen bonds of complex 2

Fig S49 The 2D sheet structure connected by hydrogen bonds of complex ${\bf 2}$

Fig S50 The 3D network structure connected by hydrogen bonds of complex 2

Fig S51 The unit structure of complex **3** (symmetry codes: #1: -x+2,-y+1,-z+1)

Fig S52 The 1D chain structure connected by hydrogen bonds of complex 3

Fig S53 The unit structure of complex 4 (symmetry codes: #1: 2-x, 2-y, -z)

Fig S54 The 1D chain structure connected by hydrogen bonds of complex 4

Fig S55 The unit structure of complex 5 (symmetry codes: #1: 1-x, 1-y, 1-z)

Fig S56 The 1D chain structure connected by hydrogen bonds of complex 5

Fig S57 The unit structure of complex 9 (symmetry codes: #1: 1-x, 1-y, 1-z)

Fig S58 The 1D chain structure connected by hydrogen bonds of complex 9

Fig S59 The 2D sheet structure connected by hydrogen bonds of complex ${\bf 9}$

Fig S60 The 3D network structure connected by hydrogen bonds of complex 9

Fig S61 The unit structure of complex 10(symmetry codes: #1: 1-x, 1-y, -z)

Fig S62 The 1D chain structure connected by hydrogen bonds of complex ${\bf 10}$

Fig S63 The 2D sheet structure connected by hydrogen bonds of complex 10

Fig S64 Antimicrobial activity against G. S of complexes 1-10 and phen (**phen 1**: 6.15 mg/ml, 3.08 mg/ml, 1.54 mg/ml, 0.77 mg/ml; **phen 2**: 7.34 mg/ml, 3.67 mg/ml, 1.84 mg/ml, 0.92 mg/ml; **phen 3**: 3.83 mg/ml, 1.92 mg/ml, 0.96 mg/ml, 0.48 mg/ml)

Fig S65 The associations of the diameters of the inhibition zones with relative amounts of phen against G. S

Fig S66 The associations of the diameters of the inhibition zones with relative amounts of phen against G. S

Fig S67 The associations of the diameters of the inhibition zones with relative amounts of phen against G. S

Fig S68 Antimicrobial activity against E. C of complexes 1-10 and phen (phen 1: 6.15 mg/ml, 3.08 mg/ml, 1.54 mg/ml, 0.77 mg/ml; phen 2: 7.34 mg/ml, 3.67 mg/ml, 1.84 mg/ml, 0.92 mg/ml; phen 3: 3.83 mg/ml, 1.92 mg/ml, 0.96 mg/ml, 0.48 mg/ml)

Fig S69 The associations of the diameters of the inhibition zones with relative amounts of phen against E. C

Fig S70 The associations of the diameters of the inhibition zones with relative amounts of phen against E. C

Fig S71 The associations of the diameters of the inhibition zones with relative amounts of phen against E. C

Fig S72 Antimicrobial activity against P.A of complexes 1-10 and phen (**phen 1**: 6.15 mg/ml, 3.08 mg/ml, 1.54 mg/ml, 0.77 mg/ml; **phen 2**: 7.34 mg/ml, 3.67 mg/ml, 1.84 mg/ml, 0.92 mg/ml; **phen 3**: 3.83 mg/ml, 1.92 mg/ml, 0.96 mg/ml, 0.48 mg/ml)

Fig S73The associations of the diameters of the inhibition zones with relative amounts of phen against P. A

Fig S74 The associations of the diameters of the inhibition zones with relative amounts of phen against P. A

Fig S75 The associations of the diameters of the inhibition zones with relative amounts of phen against P. A

Fig S76 Antimicrobial activity against B.S of complexes 1-10 and phen (**phen 1**: 6.15 mg/ml, 3.08 mg/ml, 1.54 mg/ml, 0.77 mg/ml; **phen 2**: 7.34 mg/ml, 3.67 mg/ml, 1.84 mg/ml, 0.92 mg/ml; **phen 3**: 3.83 mg/ml, 1.92 mg/ml, 0.96 mg/ml, 0.48 mg/ml)

Fig S77 The associations of the diameters of the inhibition zones with relative amounts of phen against B. S

Fig S78 The associations of the diameters of the inhibition zones with relative amounts of phen against B. S

Fig S79 The associations of the diameters of the inhibition zones with relative amounts of phen against B. S