Electronic Supplementary Information

Controlled Nitridation of Tantalum (Oxy)Nitride Nanoparticles

towards Optimized Metal-Support Interactions with Gold

Nanocatalysts

Xiaoyun Yang,† Sina He,† Yijin Shu,† Zhangping Shi,‡ Yulin Guo,† Qingsheng Gao*† and Yi Tang‡

† Department of Chemistry, Jinan University

No. 601 Huangpu West Avenue, Guangzhou, 510632, P. R. China

E-mail: tqsgao@jnu.edu.cn

‡ Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University

No. 220 Handan Road, Shanghai, 200433, P. R. China

Fig. S1 XRD patterns of three typical products received at $R_{U/Ta} = 1.0$, 2.0 and 7.0 with the standard ones obtained from PDF database.

Fig. S2 SEM images of products synthesized via a Sr²⁺-mediated ionothermal method with the RU/Ta ratio of (a) 1.0, (b) 3.0, (c) 4.0, (d) 5.0 and (e) 6.0.

Fig. S3 EDS taken on TaON and Ta₃N₅ nanoparticles after a treatment with 1 M HCl for 48 hours, which are synthesized with the R_{U/Ta} of 2.0 and 7.0, respectively.

				$S_{BET}(m^2 g^{-1})^a$ N $(wt\%)^b$ Au $(wt\%)^c$ CO uptake $(mL \cdot g^{-1}{}_{Au})^d$
Ta_2O_5	22.5			
TaON	21.3	5.0		
Ta_3N_5	25.6	9.5		
0.9% Au/Ta ₂ O ₅	17.9		0.88	47.0
0.8% Au/TaON	15.6		0.81	47.8
0.9% Au/Ta ₃ N ₅	16.9		0.89	46.8

Table S1 Textures of Ta-based supports and the corresponding supported Au nanocatalysts used in our work.

a: determined by N_2 isothermal sorption, b: detected by CHN elemental analysis, c: investigated by ICP-AES, d: measured by a chemisorption equipment.

Fig. S4 (a) UV-Vis DRS and (b) schematic band structures of Ta₂O₅, TaON and Ta₃N₅, respectively. The increased Fermi level (E_F) in TaON and Ta₃N₅ due to nitridation is highlighted in (b), as compared with that of Ta_2O_5 .

Fig. S5 XRD patterns of products obtained (red) at 550 $^{\circ}$ C with a N₂ flow rate of 500 mL min⁻¹, and (black) at 700 °C with a N₂ flow rate of 100 mL min⁻¹, employing SrTa/U with $R_{U/Ta} = 2.0$ as the precursor.

Fig. S6 Unit cells of (a) Ta₂O₅ and (b) SrTa₄O₁₁, and the corresponding length distribution of Ta-O bonds in (c) Ta_2O_5 and (d) $SrTa_4O_{11}$.

Fig. S7 TGA/DSC curves of SrTa/U and Ta/U with the same R_{U/Ta} of (a) 2.0 and (b) 7.0.

Fig. S8 FT-IR spectra of products received from the calcination of (I) SrTa/U and (II) Ta/U with the same $R_{U/Ta}$ of 2.0 at 500°C. The obvious adsorption bands for v_{N-H} , v_{C-H} , $v_{C=N}$, v_{triazine} , $v_{\text{C-N-C}}$ and $v_{\text{C-N}}$ well confirm the presence of CN_x in the products derived from both SrTa/U and Ta/U.^[1]

Fig. S9 XRD patterns of the samples obtained from calcining Ta/U precursors ($R_{U/Ta} = 2.0$ and 7.0) at 700 and 775 °C. At 700 °C, only amorphous products are received in the absence of Sr^{2+} , and the higher temperature of 775 °C is required to fabricate crystallized Ta-based (oxy)nitrides, which is well consistent with the TGA/DSC results (Figure 5a in manuscript and Figure S6 in SI).

Fig. S10 XRD patterns of the products obtained with a varied Sr/Ta ratios ($R_{Sr/Ta}$) of 0.5, 1.0 and 2.0, as a $R_{U/Ta}$ of (a) 2.0 and (b) 7.0 is adopted, which clearly show the influenced nitridation by controlling strontium tantalate intermediates. In the case with the $R_{U/Ta}$ of 2.0 (a), TaON is received at $R_{Sr/Ta} = 0.5$ and 1.0, while, SrTa₄O₁₁ is mainly harvested at $R_{Sr/Ta} =$ 2.0. The presence of SrTa₄O₁₁ is associated with the inadequate urea for nitridation ($R_{U/Ta}$ = 2.0). This indicates the suitable $R_{Sr/Ta}$ between 0.5 ~ 1.0 for the controlled generation of TaON. In another case with the $R_{U/Ta}$ of 7.0 (b), a varied evolution is observed, which can be ascribed to the sufficient nitrogen source of urea. With the low $R_{Sr/Ta}$ of 0.5, a mixture of Ta₃N₅ and TaON is obtained due to insufficient Sr^{2+} , and Ta₃N₅ is fabricated as R_{Sr/Ta} is 1.0. With the high R_{Sr/Ta} of 2.0, TaON is received because the controlled nitridation is further enhanced by excessive Sr^{2+} .

Fig. S11 (a-e) SEM images and (f) XRD patterns of products synthesized via Ba²⁺-mediated ionothermal method with the $R_{U/Ta}$ from 1.0 to 5.0.

Fig. S12 (a-e) SEM images and (f) XRD patterns of products synthesized via Ca²⁺-mediated ionothermal method with the $R_{U/Ta}$ from 1.0 to 5.0.

Fig. S13 (a-e) SEM images and (f) XRD patterns of products synthesized via Mg²⁺-mediated ionothermal method with the $R_{U/Ta}$ from 1.0 to 5.0.

Entry	Catalysts	Conv(%)	Sel. $(\%)$		
			PHA	AN	
1	0.5% Au/Ta ₂ O ₅	36	>99	$\boldsymbol{0}$	
$\overline{2}$	0.5% Au/TaON	39	85	15	
3	0.5% Au/Ta ₃ N ₅	37	>99	$\boldsymbol{0}$	
$\overline{4}$	1.3% Au/Ta ₂ O ₅	60	42	58	
5	1.3% Au/TaON	>99	29	71	
6	1.4% Au/Ta ₃ N ₅	67	58	42	
7	1.8% Au/Ta ₂ O ₅	77	67	33	
8	1.7% Au/TaON	>99	27	73	
9	1.7% Au/Ta ₃ N ₅	96	37	63	

Table S2 Hydrogenation of NB over supported Au with a varied loading amount.^a

[a] Typical conditions: NB (0.5 mmol), catalysts (40 mg), FA (6.0 mmol), EtOH (5.0 mL), H₂O (5.0 mL), N_2 (0.5 MPa), 80 °C, 2.5 hours.

Table S3 Catalytic decomposition of formic acid over supported Au.^a

Catalysts	Conv. $(\%)$	CO_2 Sel. $(\%)$
0.9% Au/Ta ₂ O ₅	44	>99
0.8% Au/TaON	49	> 99
0.9% Au/Ta ₃ N ₅		> 99

a: Typical reaction conditions: 6 mmol of HCOOH, 40 mg of catalyst, 0.5 MPa N_2 , 80 °C, 2.5 hours. The liquid and gas products were analyzed by HPLC and GC, respectively.

Table S4 Catalytic hydrogenation of phenylhydroxylamine (PHA) over supported Au.^a

Catalysts	Conv(%)	Sel. _{AN} $(\%)$
0.9% Au/Ta ₂ O ₅	79	> 99
0.8% Au/TaON	78	> 99
0.9% Au/Ta ₃ N ₅	72	> 99

[a] Typical conditions: PHA (0.5 mmol), catalysts (40 mg), FA (6.0 mmol), EtOH (5.0 mL), H₂O (5.0 mL), N_2 (0.5 MPa), 80 °C, 2.5 hours.

References

[1] B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Muller,W. Schnick, *J. Am. Chem. Soc.* **2003**, *125*, 10288.