A theoretical and experimental study of the crystal structure of $H_2V_3O_8^{\dagger}$

Yoann Mettan,*a Riccarda Caputo,*b and Tapan Chatterji c

1 Supplementary Information

The crystal structure of $H_2V_3O_8$ was described¹ as being characterized by a nearly two-dimensional framework of V_3O_8 layers, comprised of three kinds of $[VO_n]$ polyhedra: two $[VO_6]$ octahedra and one $[VO_5]$ trigonal bipyramid. Units of edge-sharing octahedra pile up along the crystallographic **b**-axis and are connected by two edge-sharing trigonal bipyramids forming V_3O_8 layers in the *ab*-plane and stacked along the **b**-axis.

As the square pyramid and the trigonal bipyramid are closely related by the Berri-pseudo rotation, some authors may refer to this unit as trigonal bipyramid.

The electron diffraction patterns indicate that the $H_2V_3O_8$ fibers elongate along the **b**-axis.

A cut through the V-O bonds at 2.15 Å shows that the facesharing octahedral coordination of vanadium atoms reduces to corner-sharing square pyramidal coordination, because the V(1)-O(1) bond, 2.180 Å, displaced along the **b**-direction, is longer than the other five bonds. Accordingly, the V₃O₈ framework can be described entirely by trigonal bipyramids, [VO₅], which are alternatively corner- and edge-sharing in the (*ac*)-plane.

 $H_2V_3O_8$ and $V_3O_7 \cdot H_2O$ are likewise reported in literature to indicate the same compound, because of a lack of knowledge about the exact location of the hydrogen atoms in the lattice. A close look at the vanadium coordination in the monoclinic structure of V_3O_7 , space group C2/c, proposed by Waltersson², suggests that it does not share the identical structural features of the orthorhombic structure suggested by Oka¹ for $H_2V_3O_8$. In the monoclinic heptaoxide V_3O_7 , chains of edge-sharing squarebased pyramides, $[VO_5]$, alternate by corner-sharing with the octahedra $[VO_6]$ along the crystallographic **c**-direction. The edgesharing octahedra, $[VO_6]$, displaced on the (ac)-plane are cornersharing along the crystallographic **b**-direction.

The Figure 1 shows a topview of the monoclinic $V_3O_7^2$ and the

orthorhombic $H_2V_3O_8^{-1}$ structures, as they are reported in the references.

At DFT-D level of theory, the geometry optimization of the monoclinic structure of $V_3 O_7^2$ resulted still monoclinic, after relaxing the atomic positions and the lattice parameters, but represented in the symmetry space group C2/m (IT No 15), which differs from the C2/c symmetry space group by the mirror plane. The number of formula units in the optimized structure is accordingly half of the reference structure. In the optimized structure the (1 0 0) plane passes through the six-fold coordinated vanadium atoms, which octahedra are alternatively corn- and edge-sharing units. In Table S.1 the structure data of the optimized monoclinic structure of V_3O_7 , symmetry space group C2/m are reported.

The ribbon-like morphology of the V_3O_8 framework¹ is characterized by the corner-sharing units [VO₅], aligned on the (*ac*)plane and interconnected perpendicularly, along the **b**-direction

^a Belenos Clean Power Holding Ltd, c/o Renata AG, CH-4452 Itigen, Switzerland; Email: yoann.mettan@belenoscleanpower.com

^b ETH Zürich, Swiss Federal Institute of Technology, Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland; E-mail: riccarda.caputo@inorg.chem.ethz.ch

^c Institute Lau-Langevin, 71 Avenue des Martyrs, CS 20156 - 38042 Grenoble, Cedex 9, France

[†] Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

Table 1: The atomic positions of the monoclinic structure of V₃O₇, space group *C*2/*m* (IT No 12), optimized at DFT-D level. The lattice parameters are: a = 18.626 Å, b = 3.622 Å, c = 13.719 Å, $\beta = 126.135$ degrees.

species	х	У	Z	site
V(1)	0	1/2	0	2b
V(2)	0.5035	0	0.3840	4 <i>i</i>
V(3)	0.3358	0	0.0653	4 <i>i</i>
V(4)	0.6614	0	0.3290	4 <i>i</i>
V(5)	0.2992	0	0.3400	4 <i>i</i>
0(1)	0.0049	0	0.3894	4 <i>i</i>
O(2)	0	0	0	2a
O(3)	0.7986	0	0.0573	4 <i>i</i>
O(4)	0.2008	0	0.3608	4 <i>i</i>
O(5)	0.2168	0	0.6315	4 <i>i</i>
0(6)	0.3865	0	0.5937	4 <i>i</i>
0(7)	0.3908	0	0.0029	4 <i>i</i>
O(8)	0.2608	0	0.1979	4 <i>i</i>
0(9)	0.5785	0	0.1813	4 <i>i</i>
O(10)	0.4251	0	0.2213	4 <i>i</i>
0(11)	0.4172	0	0.4250	4 <i>i</i>

to the edge-sharing [VO₅]. If the structure of V_3O_7 converted into the $\mathrm{H_2V_3O_8}$ structure by $\mathrm{H_2O}$ absorption, the reaction $\mathrm{V_3O_7}+$ $H_2O \rightarrow H_2V_3O_8$ would involve the formation of a new V-O bond, unless to consider the water molecules simply coordinated into the V₃O₇ lattice by polarization interactions. In the latter case the V-O skeletons of V₃O₇ and V₃O₈ should perfectly match, unless water absorption can induce lattice distortion, besides eventually a volume expansion, but they do not. In addition, there is no direct group-subgroup relationship neither between the experimental (C2/c) nor the theoretically optimized V_3O_7 model (C2/m) between the monoclinic heptaoxide, $\mathrm{V_3O_7}$ and the orthorhombic framework of V₃O₈¹. Moreover, there are clear distinctions in terms of connectivities between the polyhedra in V3O7 and V3O8 framework¹. This means that there cannot be a continuous second order kind of transition on adding water to V3O7 to form $H_2V_3O_8$. On the other hand, lattice distortions induced upon water absorption have to be sufficient to turn into orthogonal the monoclinic lattice of V₃O₇ and accordingly change the edgesharing polyhedra [VO₆] in V₃O₇ into corn-sharing square pyramids, $[V_{05}]$, being the octahedra $[VO_6]$ absent in V_3O_8 network. Our calculations of the absorption of H₂O in the monoclinic heptoxide, V_3O_7 , showed that it is an exothermic process, of which the enthalpy of absorption to form the orthorhombic $H_2V_3O_8$ is -68.07 kJ/mol of H₂O absorbed, calculated at DFT-D level and at (P, T) equal to zero, without accounting in for the zero-point energy and the thermal contributions. Although a detail understanding of water absorption in V₃O₇ requires a study on its own, our molecular dynamics calculations (NPT ensemble, P = 1 atm, T = 300 K) of the stoichiometric amount of H_2O in V_3O_7 to have formally H₂V₃O₈, revealed an interesting chemistry. In fact, the O-H bonds in H₂O split into OH, with the oxygen atom forming the new V-O bonds and H atoms bound to the oxygen atoms of the $[VO_6]$ octahedra. Accordingly, the MD calculations suggest the formation of hydroxyl group, which hydrogen atoms interact via hydrogen bonds.

In Figure 2 is shown a snapshot of a trajectory of the molecular dynamics of the system V_3O_7 (monoclinic structure) and the stoi-

chiometric amount of water to have the formulation $H_2V_3O_8$. For comparison the monoclinic structure of V_3O_7 optimized at DFT-D level is reported. Interestingly, by H_2O absorption the lattice turned almost orthogonal. In fact, the β angle in V_3O_7 changed from 126.14 degrees to 91.10 degrees. The hydroxyl group and hydrogen bonds are formed.

Fig. 2: (a) A snapshot (top-view) of the room-temperature molecular dynamics of the system $V_3O_7 + H_2O$. The O-H distances are in Å. (b) A top-view of the monoclinic structure, C2/m, of V_3O_7 as optimized at DFT-D level. Representing colours: vanadium, green with the polyhedra of coordination; oxygen, red; hydrogen, white.

A Scanning Electron Micrograph (SEM) of the as-synthesised $H_2V_3O_8$ is shown in Figure 3.

The XRD pattern of the residual of the TG analysis at 690 K is reported in Figure 4. Several phases are present, among which the monoclinic structure of V_3O_7 .

References

- 1 Y. Oka, T. Yao and N. Yamamoto, J. Solid State Chem., 1990, 89, 372–377.
- 2 K. Waltersson, B. Forslund, K. Wilhelmi, S. Andersson and J. Galy, *Acta Cryst. B*, 1974, **30**, 2644.

Fig. 3: (a) A SEM image of the bunched $H_2V_3O_8$ nanowires. (b) A 3Dview, in the wireframe representation, of $H_2V_3O_8$ (structure 1) showing the displacement of the wires along the crystallographic **b**-direction. (c) a top-view with the polyhedra of coordination of vanadium atoms cut through the V-O bond length of 2.30 Å. Representing colours: hydrogen, blue; vanadium, green; oxygen, grey.

Fig. 4: A XRD pattern of the residual of the TG analysis at 690 K.