Supporting Information

Palladium-Catalyzed Asymmetric [3+2] Cycloaddition to Construct 1,3-Indandione and Oxindole-Fused Spiropyrazolidine Scaffolds

Bo Cao,^a Liang-Yong Mei,^b Xiao-Ge Li,^c and Min Shi^{ab*}

^aKey Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry &

Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road,

Shanghai 200237, China.

^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry,

Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 China.

<u>Mshi@mail.sioc.ac.cn</u>. Fax 86-21-64166128

^c Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China. <u>lixiaoge@sioc.ac.cn</u>

CONTENTS

1.	General remarks	S2
2.	General procedure for synthesis of cyclopropane 1	S3
3.	General procedure for synthesis of 3-diazooxindoles 2	S3-S4
4.	Characterization and spectra charts for ligand L	S4-S11
5.	Screening of ligands for the [3+2] cycloaddition	S12-S14
6.	General procedure for synthesis of spiropyrazolidine derivatives 3	S14-S15
7.	Characterization and spectra charts containing HPLC traces for 3	S15-S63
8.	Procedure for synthesis of 5 and its characterization and spectra charts	S63-S67
9.	X-ray crystallographic information of products 5	S68
10.	Experimental and results: Vibrational Circular Dichroism (VCD) of Product 5	S68-S71
11.	References	

1. General remarks. MP was obtained with a Yanagimoto micro melting point apparatus and is uncorrected. Optical rotations were determined in a solution of CHCl₃ or CH₂Cl₂ at 20 °C by using a Perkin-Elmer-241 MC polarimeter; $[\alpha]_D$ -values are given in units of 10⁻¹ deg cm² g⁻¹. Infra-red spectra were measured on a spectrometer. ¹H NMR spectra were recorded for solution in CDCl₃ with tetramethylsilane (TMS) as internal standard; ³¹P NMR spectra were recorded for a solution in CDCl₃ with 85% H₃PO₄ as the external reference. *J*-values are in Hz. Mass spectra were recorded with a HP-5989 instrument and HRMS was measured by a Finnigan MA+ mass spectrometer. Organic solvents used were dried by standard methods when necessary. Commercially available reagents were used without further purification. All reactions were monitored by TLC with Huanghai GF₂₅₄ silica gel coated plates. Flash column chromatography was carried out using 300-400 mesh silica gel at increased pressure. All reactions were performed under argon using standard Schlenk techniques. The optical purities of products were determined by HPLC analysis using a SHIMADZU SPD-10A *vp* series with chiral columns (Chiralpak IB-3 and IF-3 columns 4.6 x 250 mm, (Daicel Chemical Ind., Ltd.)).

Ligands L1-L5, L8, L11-L15^[1] were prepared according to the previously reported procedures.

2-Vinylspiro[cyclopropane-1,2'-indene]-1',3'-dione 1,^[2] was prepared according to the previously reported procedures.

3-Diazooxindoles 2 were prepared according to the previously reported procedures.^[3]

2. General procedure for the synthesis of 2-vinylspiro[cyclopropane-1,2'-indene]-1',3'-dione 1

1*H*-indene-1,3(2*H*)-dione (1.0 equiv) and 1,4-dibromobut-2-ene (1.0 equiv) were added to a round bottom flask with a magnetic stir bar under an atmosphere of argon. To this was added tetrahydrofuran (0.2 mL) and cesium carbonate (2.5 equiv). A condenser was added, and reaction mixture was then heated to 60 °C over night. After cooling down to room temperature, the reaction mixture was filtered through a celite and washed with diethyl ether. The organic phase was washed with saturated aqueous NaHCO₃, followed by water and brine. The solution was dried over anhydrous Na₂SO₄. After filtration over Na₂SO₄, the solvent is removed under reduced pressure. The crude product is purified by means of silica gel chromatography using petroleum ether and diethylether as an eluent. The yields have not been optimized for the synthesis of 2vinylspiro[cyclopropane-1,2'-indene]-1',3'-dione.

3. General procedure for the synthesis of 3-diazooxindoles 2

Isatin (5.0 mmol, 1.0 equiv) was suspended in MeOH (20 mL). The suspension was heated to 60 °C, whereupon a deep-red solution was obtained. To this hot solution was added tosylhydrazine (5.5 mmol, 1.1 equiv) in one portion. A yellow product started precipitating from the hot mixture. The reaction mixture was stirred at 60 °C for 18 h, and then allowed to reach room temperature. The corresponding tosylhydrazone was collected by filtration and was used for the next step without further purification.

A solution of the tosylhydrazone (5.0 mmol, 1.0 equiv) in THF (20 mL) was treated with a solution of NaOH (10.0 mmol, 2.0 equiv) in H₂O (50 mL). The reaction mixture was stirred for 3 h at room temperature. EtOAc (40 mL) was added to the reaction mixture and the organic layers were separated. The aqueous layer was adjusted to pH = 7 by addition of dry-ice, and extracted with EtOAc (60 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the solvent was evaporated in vacuo. Column chromatography (1:6 EtOAc/PE) afforded **2** as deeporange solids.

4. Characterization and spectra charts for ligand.

(4S,5S)-2-((R)-1-(2-(bis(3,5-dimethoxyphenyl)phosphino)naphthalen-1-yl)naphthalen-2-yl)-1-tosyl-4,5-bis(4-methoxyphenyl)-4,5-dihydro-1H-imidazole L6

0.5 mmol scale, a white solid, 11% yield for three steps (86 mg). M.p.: 128-130 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.28 (s, 3H, CH₃), 3.41 (s, 6H, CH₃), 3.48 (s, 6H, CH₃), 3.71 (s, 3H, CH₃), 3.76 (s, 3H, CH₃), 4.36 (d, *J* = 6.0 Hz, 1H, CH), 4.52 (d, *J* = 6.0 Hz, 1H, CH), 5.70 (d, *J* = 8.4 Hz, 2H, ArH), 6.00 (dd, *J* = 2.4 Hz, 8.8 Hz, 2H, ArH), 6.19 (dd, *J* = 2.0 Hz, 2.0 Hz, 1H, ArH), 6.24-6.25 (m, 1H, ArH), 6.34-6.38 (m, 4H, ArH), 6.61 (d, *J* = 8.4 Hz, 1H, ArH), 6.69-6.80 (m, 5H, ArH), 6.94 (d, *J* = 8.0 Hz, 2H, ArH), 7.16 (d, *J* = 8.4 Hz, 2H, ArH), 7.28-7.34 (m, 2H, ArH), 7.50-7.59 (m, 2H, ArH), 7.81 (d, *J* = 8.4 Hz, 1H, ArH), 7.89 (d, *J* = 8.4 Hz, 1H, ArH), 7.95-8.02 (m, 2H, ArH), 8.05 (d, *J* = 8.8 Hz, 1H, ArH), 8.15 (d, *J* = 8.4 Hz, 1H, ArH). ³¹P NMR (CDCl₃, 161 MHz, 85% H₃PO₄) δ -9.31. IR (CH₂Cl₂) v 3062, 2960, 2932, 2834, 1642, 1584, 1511, 1460, 1411, 1280, 1247, 1203, 1155, 1087, 1036, 816, 689, 665 cm⁻¹. MS (MALDI) *m/z* (%): 993.2 (100) [M+H]⁺; HRMS (MALDI) Calcd. for C₆₀H₅₄N₂O₈PS⁺¹(M+H)⁺ requires 993.3333, Found: 993.3327. [α]_D²⁰ = +17.27 (c = 1.00, CH₂Cl₂).

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -20 f1 (ppm)

(4S,5S)-2-((R)-1-(2-(bis(3,5-di-tert-butylphenyl)phosphino)naphthalen-1-yl)naphthalen-2-yl)-1-(naphthalen-1-ylsulfonyl)-4,5-diphenyl-4,5-dihydro-1H-imidazole L7

0.5 mmol scale, a white solid, 9% yield for three steps (65 mg). M.p.: 154-156 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 0.99 (s, 18H, C(CH₃)₃), 1.06 (s, 18H, C(CH₃)₃), 4.56 (br, 1H, CH), 4.64 (d, *J* = 5.6 Hz, 1H, CH), 5.80 (br, 2H, ArH), 6.41 (d, *J* = 8.4 Hz, 1H, ArH), 6.53 (dd, *J* = 7.2 Hz, 7.2 Hz, 1H, ArH), 6.68 (dd, *J* = 1.2 Hz, 8.4 Hz, 2H, ArH), 6.74 (dd, *J* = 7.2 Hz, 7.2 Hz, 2H, ArH), 6.80-6.83 (m, 2H, ArH), 6.89 (dd, *J* = 7.6 Hz, 7.6 Hz, 1H, ArH), 6.99 (d, *J* = 7.2 Hz, 2H, ArH), 7.10-7.25 (m, 9H, ArH), 7.39 (dd, *J* = 7.6 Hz, 7.6 Hz, 1H, ArH), 7.48-7.55 (m, 2H, ArH), 7.62 (d, *J* = 8.4 Hz, 1H, ArH), 7.69 (d, *J* = 8.0 Hz, 1H, ArH), 7.79 (d, *J* = 8.0 Hz, 1H, ArH), 7.86 (d, *J* = 8.0 Hz, 1H, ArH), 7.92-8.01 (m, 4H, ArH), 8.07 (d, *J* = 8.4 Hz, 1H, ArH), 8.13 (d, *J* = 8.4 Hz, 1H, ArH). ³¹P NMR (CDCl₃, 161 MHz, 85% H₃PO₄) δ -11.29. IR (CH₂Cl₂) v 3061, 2961, 2867, 1644, 1589, 1476, 1362, 1337, 1248, 1134, 1165, 1024, 818, 770, 747, 697, 680 cm⁻¹. HRMS (ESI) Calcd. for C₇₃H₇₄N₂O₂PS⁺¹(M+H)⁺ requires 1073.5203, Found: 1073.5198. [α]_D²⁰ = -4.72 (c = 1.00, CH₂Cl₂).

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -20 f1 (ppm)

(4S,5S)-2-((R)-1-(2-(bis(3,5-di-tert-butylphenyl)phosphino)naphthalen-1-yl)naphthalen-2-yl)-1-(naphthalen-2-ylsulfonyl)-4,5-diphenyl-4,5-dihydro-1H-imidazole L9

0.5 mmol scale, a white solid, 7% yield for three steps (30 mg). M.p.: 150-153 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 1.00 (s, 18H, C(CH₃)₃), 1.05 (s, 18H, C(CH₃)₃), 4.51 (d, *J* = 5.6 Hz, 1H, CH), 4.71 (d, *J* = 5.6 Hz, 1H, CH), 5.73 (d, *J* = 6.8 Hz, 2H, ArH), 6.43 (d, *J* = 8.8 Hz, 1H, ArH), 6.57 (dd, *J* = 6.8 Hz, 6.8 Hz, 1H, ArH), 6.62-6.70 (m, 4H, ArH), 6.79 (dd, *J* = 7.6 Hz, 7.6 Hz, 1H, ArH), 6.89 (d, *J* = 7.2 Hz, 2H, ArH), 6.94 (dd, *J* = 0.8 Hz, 7.6 Hz, 2H, ArH), 7.02-7.11 (m, 5H, ArH), 7.16-7.23 (m, 2H, ArH), 7.27-7.32 (m, 1H, ArH), 7.45-7.62 (m, 6H, ArH), 7.71 (d, *J* = 8.0 Hz, 1H, ArH), 7.79-7.85 (m, 3H, ArH), 8.04-8.17 (m, 4H, ArH). ³¹P NMR (CDCl₃, 161 MHz, 85% H₃PO₄) δ -11.44. IR (CH₂Cl₂) v 3060, 2961, 2926, 2858, 1644, 1588, 1456, 1476, 1362, 1341, 1362, 1341, 1261, 1249, 1167, 1073, 1020, 874, 817, 746, 697, 666 cm⁻¹. HRMS (ESI) Calcd. for C₇₃H₇₄N₂O₂PS⁺¹(M+H)⁺ requires 1073.5203, Found: 1073.5201. [α]_D²⁰ = -36.24 (c = 1.00, CH₂Cl₂).

(48,58)-2-((R)-1-(2-(diphenyl)phosphino)naphthalen-1-yl)naphthalen-2-yl)-1-(4-

dodecylphenyl)sulfonyl)-4,5-diphenyl-4,5-dihydro-1H-imidazole L10

0.5 mmol scale, a white solid, 30% yield for three steps (181 mg). M.p.: 92-95 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 0.79-1.57 (m, 25H, CH₂, CH₃), 4.43 (d, *J* = 6.0 Hz, 1H, CH), 4.59 (d, *J* = 6.0 Hz, 1H, CH), 5.83 (d, *J* = 8.0 Hz, 2H, ArH), 6.69 (d, *J* = 8.4 Hz, 1H, ArH), 6.77-6.92 (m, 7H, ArH), 6.97-7.01 (m, 7H, ArH), 7.07-7.17 (m, 5H, ArH), 7.22-7.25 (m, 3H, ArH), 7.29-7.39 (m, 3H, ArH), 7.52-7.58 (m, 2H, ArH), 7.81 (d, *J* = 8.4 Hz, 1H, ArH), 7.91 (d, *J* = 8.0 Hz, 1H, ArH), 7.96-8.04 (m, 3H, ArH), 8.14 (d, *J* = 8.8 Hz, 1H, ArH). ³¹P NMR (CDCl₃, 161 MHz, 85% H₃PO₄) δ - 14.32. IR (CH₂Cl₂) v 3056, 2955, 2926, 2854, 1643, 1595, 1494, 1455, 1434, 1373, 1341, 1167, 1089, 1026, 958, 817, 775, 742, 696, 676 cm⁻¹. HRMS (ESI) Calcd. for C₆₅H₆₄N₂O₂PS⁺¹(M+H)⁺ requires 967.4421, Found:967.4416. [α]_D²⁰ = +14.84 (c = 1.00, CH₂Cl₂).

5. Screening of ligands for palladium-catalyzed asymmetric formal [3+2]-cycloaddition

We began our investigation by exploring our previously developed catalytic system for palladium(0)-catalyzed asymmetric [3+2] cycloaddition using 3-diazooxindoles serving as dipolarophiles. 2-vinylspiro[cyclopropane-1,2'-indene]-1',3'-dione 1 and 1-benzyl-3-diazoindolin-2-one 2a were used as the model substrates, toluene was employed as solvent in the presence of ligands L1-L15 at 0 °C. The use of chiral imidazoline-phosphine type ligand (aR,S,S)-L1 in the reaction furnished the desired product **3a** in 88% yield along with 48% ee (Table SI-1, entry 1), while employing ligand (aR,R,R)-L2 provided the product 3a in 47% yield with 19% ee value (Table SI-1, entry 2). Another four newly synthesized chiral imidazoline-phosphine ligands L6, L7, L9, and L10 as well as L2-L5 and L8 were also used to screen the optimal ligand for this reaction. It was found that using 1 and 2a as model substrates in toluene at 0 °C, chiral imidazoline-phosphine (aR,S,S)-L8 was identified as the best ligand for this reaction, resulting in 3a in 95% yield and 78% ee (Table SI-1, entry8). For comparison, we also examined the chiral phosphine-oxazoline ligands (aS,S)-L11 and (aR,S)-L12 in this reaction under identical conditions. However, the use of ligand L12 gave no desired product 3a (Table SI-1, entry 12), while the use of ligand L11 resulted in the formation of 3a in 88% yield but only along with 15% ee (Table SI-1, entry 11). Other ligands, such as L13, L14 or L15, did not give the desired product 3a (Table SI-1, entries 13-15).

Table SI-1. Screening of Ligands for Pd-Catalyzed [3+2] Cycloaddition

	2a Bn	Pd₂(dba)₃ [·] CHCl₃ (5 mol%) Ligand L (10 mol%) toluene, 0 °C, 24 h	$ \begin{array}{c} $
entry ^[a]	Ligand	yield [%] ^[b]	ee [%] ^[c]
1	L1	88	48
2	L2	47	19
3	L3	97	70
4	L4	84	50
5	L5	92	60
6	L6	98	71
7	L7	96	61
8	L8	95	78
9	L9	96	67
10	L10	93	26
11	L11	88	15
12	L12	trace	n. d.
13	L13	trace	n. d.
14	L14	trace	n. d.
15	L15	trace	n. d.

^{a)} The reaction was conducted with **1** (0.1 mmol) and **2a** (0.15 mmol) in toluene (0.75 mL). ^{b)} Isolated yield. ^{c)} The ee values were determined by chiral HPLC on Chiralcel IB-3.

6. General procedure for palladium-catalyzed asymmetric formal [3+2]-cycloaddition of 2vinylspiro[cyclopropane-1,2'-indene]-1',3'-dione with 3-diazooxindole in the presence of Pd₂(dba)₃·CHCl₃ and chiral imidazoline-phosphine ligand L8

A solution of enantiomerically pure ligand L8 (0.01 mmol, 10 mol %) and tris(dibenzylideneacetone)dipalladium(0)-chloroform adduct $Pd_2(dba)_3$ ·CHCl₃ (0.005 mmol, 5 mol %) in toluene (0.25 mL) was stirred at room temperature under argon atmosphere for 30 minutes. To the solution were added a solution of 2-vinylspiro[cyclopropane-1,2'-indene]-1',3'-dione 1 (0.1 mmol, 1.0 equiv) and 3-diazooxindole 2 (0.15 mmol, 1.5 equiv) in toluene (0.5 mL), and the

reaction mixture was stirred at 0 °C for 24 hours. After the reaction completed, the mixture was concentrated in vacuo to yield the crude product, which was purified by a flash chromatography on silica gel (eluent: $PE/EtOAc = 5/1 \sim 10/1$) to furnish the desired product **3** as a red solid.

7. Characterization and spectra containing HPLC traces charts for 3

(E)-1'-(1-benzyl-2-oxoindolin-3-ylidene)-1,3-dioxo-5'-vinyl-1,3-dihydrospiro[indene-2,3'pyrazolidin]-1'-ium-2'-ide 3a

A red solid, 98% yield (44 mg), 78% ee. M.p.: 118-121 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.35 (d, *J* = 13.2 Hz, 1H, CH₂), 2.87 (dd, *J* = 9.6 Hz, 13.2 Hz, 1H, CH₂), 4.93 (d, *J* = 15.6 Hz, 1H, CH₂), 5.10 (d, *J* = 15.6 Hz, 1H, CH₂), 5.39 (d, *J* = 10.0 Hz, 1H, =CH₂), 5.72 (d, *J* = 16.8 Hz, 1H, =CH₂), 6.38 (ddd, *J* = 8.4 Hz, 10.0 Hz, 16.8 Hz, 1H, =CH), 6.70 (d, *J* = 8.0 Hz, 1H, ArH), 6.74-6.79 (m, 1H, CH), 6.89 (dd, *J* = 7.6 Hz, 7.6 Hz, 1H, ArH), 7.05 (dd, *J* = 7.6 Hz, 7.6 Hz, 1H, ArH), 7.23-7.33 (m, 5H, ArH), 7.87 (dd, *J* = 7.6 Hz, 7.6 Hz, 1H, ArH), 7.97-8.00 (m, 2H, ArH), 8.11-8.14 (m, 2H, ArH). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 33.4, 43.4, 76.1, 82.6, 107.8, 112.7, 119.6, 120.0, 121.6, 123.0, 124.3, 124.5, 127.1, 127.2, 127.3, 128.6, 136.1, 136.6, 136.8, 138.1, 141.5, 141.7, 160.6, 197.6, 198.1. IR (CH₂Cl₂) v 2923, 2853, 1712, 1673, 1605, 1542, 1466, 1343, 1269, 1217, 1185, 1166, 759, 746, 719, 670 cm⁻¹. Ms (MALDI) m/z: 447.6 (M+H⁺, 100); HRMS (MALDI) Calcd. for C₂₈H₂₂N₃O₃ (M+H⁺), requires 448.1656, found: 448.1639.

HPLC spectra:

HPLC REPORT

Sample Name: mly-20-16-a -racemic Column: IB-3 Velocity (mL/min): 0.7 Date: #### Mobile Phase: hex/ipr = 95/5 Detection Wavelength (nm): 254

Chiral HPLC report: 3a

HPLC REPORT

Sample Name: mly-20-16-a-chiral Column: IB-3 Velocity (mL/min): 0.7 Date: #### Mobile Phase: hex/ipr = 95/5 Detection Wavelength (nm): 254

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak IB-3 column; $\lambda = 254$ nm; eluent: Hexane/Isopropanol = 95/5; Flow rate: 0.7 mL/min; t_{minor} = 49.353 min, t_{major} = 55.528 min; ee = 84%. [α]_D²⁰ = -86.3 (c = 0.460, CH₂Cl₂).

(E)-1'-(1-benzyl-5-fluoro-2-oxoindolin-3-ylidene)-1,3-dioxo-5'-vinyl-1,3-dihydros piro[indene-2,3'-pyrazolidin]-1'-ium-2'-ide 3b

A red solid, 97% yield (46 mg), 64% ee. M.p.: 187-190 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.36 (d, *J* = 13.2 Hz, 1H, CH₂), 2.88 (dd, *J* = 10.0 Hz, 13.2 Hz, 1H, CH₂), 4.91 (d, *J* = 16.0 Hz, 1H, CH₂), 5.08 (d, *J* = 16.0 Hz, 1H, CH₂), 5.41 (d, *J* = 10.4 Hz, 1H, =CH₂), 5.74 (d, *J* = 17.2 Hz, 1H, =CH₂), 6.37 (ddd, *J* = 8.8 Hz, 10.4 Hz, 17.2 Hz, 1H, =CH), 6.55-6.59 (m, 1H, ArH), 6.72-6.77 (m, 2H, CH, ArH), 7.25-7.31 (m, 5H, ArH), 7.61 (d, *J* = 7.6 Hz, 1H, ArH), 7.98-8.00 (m, 2H, ArH), 8.12-8.14 (m, 2H, ArH). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 33.2, 43.6, 76.4, 82.8, 108.1 (d, J = 8.5 Hz), 110.1 (d, J = 27.3 Hz), 113.2 (d, J = 24.3 Hz), 120.4, 124.4, 124.6, 127.1, 127.4, 128.7, 134.1, 135.9, 136.4, 136.8, (d, J = 14.2 Hz), 141.5, 141.7, 158.6 (d, J = 235.7 Hz), 160.7, 197.2, 197.6. ¹⁹F NMR (CDCl₃, 376 MHz, CFCl₃) δ -122.1. IR (CH₂Cl₂) v 2923, 2854, 1712, 1673, 1541, 1472, 1326, 1288, 1204, 1151, 1111, 976, 791, 725, 716, 699 cm⁻¹. HRMS (ESI) Calcd. for C₂₈H₂₁FN₃O₃ (M+H⁺), requires 466.1561, found: 466.1561.

2.905 2.880 2.873 2.873 2.374 2.374 ſ [

HPLC spectra:

HPLC REPORT

Sample Name: cb-1-83-a-racemic Column: IB-3 Date: #### Mobile Phase: hex/ipr = 95/5

Velocity (mL/min): 0.7						D	etecti	on Wa	velen	gth (nm	i): 254			
▲ 0.003 0.002 0.001 0.001			CTIT.74			23.990								
-	1	0.000	40	.00	45	.00	50.	00	55.00)	60.00		65.00	70.00
		•							£7€† 					•
69	名称	保留时间 (分钟)	面积 (微伏*秒)	% 面积	高度 (微伏)	积分类型	含量	单位	峰类型	峰代码	相对 RT (分钟)	RT 比率	开始时间 (分钟)	结束时间 (分钟)
1		47.112	269878	50.60	3144	bb			未知				46.000	51.833
2		53.950	263468	49.40	2976	VB	50		未知				52.550	59.067
1	٥V		R	. Tim	e	Pe	eak A	Area	L I	Percen	it	P	eak He	ight
1	1 47.112			269878		4	50.60		3144					
2	2		5	3.950		26	5346	8	Z	49.40		2	976	

Chiral HPLC report: 3b

HPLC REPORT

Sample Name: cb-1-83-a-chiral Column: IB-3 Velocity (mL/min): 0.7 Date: #### Mobile Phase: hex/ipr = 95/5 Detection Wavelength (nm): 254

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak IB-3 column; $\lambda = 254$ nm; eluent: Hexane/Isopropanol = 95/5; Flow rate: 0.7 mL/min; t_{minor} = 45.745 min, t_{major} = 52.214 min; ee = 64%. [α]_D²⁰ = -46.2 (c = 0.700, CH₂Cl₂).

(E)-1'-(1-benzyl-5-chloro-2-oxoindolin-3-ylidene)-1,3-dioxo-5'-vinyl-1,3-

dihydrospiro[indene-2,3'-pyrazolidin]-1'-ium-2'-ide 3c

A red solid, 92% yield (44 mg), 78% ee. M.p.: 141-144 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.35 (d, J = 13.2 Hz, 1H, CH₂), 2.86 (dd, J = 9.2 Hz, 12.4 Hz, 1H, CH₂), 4.90 (d, J = 16.0 Hz, 1H, CH₂), 5.08 (d, J = 16.0 Hz, 1H, CH₂), 5.40 (d, J = 10.0 Hz, 1H, =CH₂), 5.74 (d, J = 16.8 Hz, 1H, =CH₂), 6.32-6.42 (m, 1H, =CH), 6.59 (d, J = 8.4 Hz, 1H, ArH), 6.75 (dd, J = 9.2 Hz, 9.2 Hz, 1H, CH), 7.00 (d, J = 8.0 Hz, 1H, ArH), 7.24-7.31 (m, 5H, ArH), 7.85 (s, 1H, ArH), 7.97-8.00 (m, 2H, ArH), 8.12-8.15 (m, 2H, ArH). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 33.4, 43.5, 76.4, 82.7, 108.6,

111.8, 120.5, 120.8, 122.4, 124.4, 124.6, 126.6, 126.9, 127.0, 127.5, 128.7, 135.8, 136.2, 136.3, 136.8, 136.9, 141.4, 141.7, 160.3, 197.2, 197.8. IR (CH₂Cl₂) v 3028, 2924, 2854, 1710, 1672, 1496, 1465, 1287, 1262, 1163, 1120, 968, 802, 732, 697, 679 cm⁻¹. MS (MALDI) m/z: 482.1 (M+H⁺, 100); HRMS (MALDI) Calcd. for $C_{28}H_{21}CIN_3O_3$ (M+H⁺), requires 482.1266, found: 482.1256.

HPLC spectra:

HPLC REPORT

Sample Name: cb-2-3-a-racemic Column: IB-3 Velocity (mL/min): 0.7 Date: #### Mobile Phase: hex/ipr = 95/5 Detection Wavelength (nm): 254

NO	R. Time	Peak Area	Percent	Peak Height
1	65.504	867506	50.92	7566
2	72.753	836185	49.08	7025

Chiral HPLC report: 3c

HPLC REPORT

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak IB-3 column; $\lambda = 254$ nm; eluent: Hexane/Isopropanol = 95/5; Flow rate: 0.7 mL/min; t_{minor} = 63.248 min, t_{major} = 69.425 min; ee = 78%. [α]_D²⁰ = -72.0 (c = 0.500, CH₂Cl₂).

(E)-1'-(1-benzyl-5-iodo-2-oxoindolin-3-ylidene)-1,3-dioxo-5'-vinyl-1,3-dihydrospiro[indene-2,3'-pyrazolidin]-1'-ium-2'-ide 3d

A red solid, 98% yield (56 mg), 82% ee. M.p.: 213-214 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.34 (d, *J* = 12.8 Hz, 1H, CH₂), 2.84 (dd, *J* = 10.0 Hz, 12.8 Hz, 1H, CH₂), 4.89 (d, *J* = 16.0 Hz, 1H, CH₂), 5.07 (d, *J* = 16.0 Hz, 1H, CH₂), 5.39 (d, *J* = 10.0 Hz, 1H, =CH₂), 5.73 (d, *J* = 16.8 Hz, 1H, =CH₂), 6.31-6.41 (m, 1H, =CH), 6.46 (d, *J* = 7.6 Hz, 1H, ArH), 6.76 (dd, *J* = 10.0 Hz, 10.0 Hz, 1H, CH), 7.23-7.36 (m, 6H, ArH), 7.99-8.01 (m, 2H, ArH), 8.13-8.14 (m, 3H, ArH). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 33.7, 43.4, 76.4, 82.6, 84.5, 109.8, 111.4, 120.5, 121.6, 124.4, 124.6, 127.0, 127.5, 128.7, 130.6, 135.4, 135.8, 136.1, 136.8, 137.0, 137.3, 141.4, 141.6, 160.0, 197.3, 198.0. IR (CH₂Cl₂) v 2923, 2853, 1712, 1677, 1537, 1464, 1271, 1164, 1124, 917, 786, 756, 699, 673, 659 cm⁻¹. HRMS (ESI) Calcd. for C₂₈H₂₁IN₃O₃ (M+H⁺), requires 574.0622, found: 574.0623.

HPLC spectra:

HPLC REPORT

Sample Name: cb-1-83-3-2-racemic Column: od-h

Date: #### Mobile Phase: hex/ipr = 70/30

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1	1	Unknown	33.665	59067.3	6614751.3	50. 5396
2	2	Unknown	41.265	46912.4	6473498.0	49.4604
Total				105979.7	13088249.3	100.0000

NO	R. Time	Peak Area	Percent	Peak Height
1	33.665	6614751	50.54	59067
2	41.265	6473498	49.46	46912

Chiral HPLC report: 3d

HPLC REPORT

Sample Name: cb-1-83-3-1-chiral Column: ad-h Velocity (mL/min): 0.5

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1	1	Unknown	33. 290	32914.7	6173280.4	9.1123
2	2	Unknown	39.948	432993.7	61573224.7	90.8877
Tota	1			465908.4	67746505.1	100.0000
NO		R. Tim	e	Peak Area	Percent	Peak Height
1		33.290		6173280	9.11	32915
2		39.948		61573225	90.89	432994

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak od-h column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 70/30; Flow rate: 0.5 mL/min; t_{minor} = 33.290 min, t_{major} = 39.948 min; ee = 82%. [α]_D²⁰ = -29.2 (c = 0.380, CH₂Cl₂).

(E)-1'-(1-benzyl-5-methyl-2-oxoindolin-3-ylidene)-1,3-dioxo-5'-vinyl-1,3dihydrospiro[indene-2,3'-pyrazolidin]-1'-ium-2'-ide 3e

A red solid, quantitative yield (46 mg), 69% ee. M.p.: 209-211 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.20 (s, 3H, CH₃), 2.33 (d, J = 12.4 Hz, 1H, CH₂), 2.84 (dd, J = 10.0 Hz, 12.4 Hz, 1H, CH₂), 4.90 (d, J = 16.0 Hz, 1H, CH₂), 5.08 (d, J = 16.0 Hz, 1H, CH₂), 5.38 (d, J = 10.0 Hz, 1H, =CH₂), 5.71 (d, J = 17.2 Hz, 1H, =CH₂), 6.33-6.42 (m, 1H, =CH), 6.58 (d, J = 8.0 Hz, 1H, ArH), 6.78 (dd, J = 10.0 Hz, 10.0 Hz, 1H, CH), 6.85 (d, J = 7.6 Hz, 1H, ArH), 7.22-7.29 (m, 5H, ArH), 7.70 (s, 1H, ArH), 7.97-7.98 (m, 2H, ArH), 8.11-8.12 (m, 2H, ArH). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 21.1, 33.8, 43.4, 75.8, 82.3, 107.6, 112.9, 119.6, 119.9, 123.5, 124.3, 124.5, 127.0, 127.2, 127.7, 128.6, 131.0, 136.0, 136.1, 136.6, 136.7, 136.8, 141.4, 141.6, 160.7, 197.9, 198.5. IR (CH₂Cl₂) v 2964, 2923, 1709, 1668, 1538, 1496, 1353, 1266, 1190, 1164, 1124, 926, 801, 729, 715, 698 cm⁻¹. HRMS (ESI) Calcd. for C₂9H₂₄N₃O₃ (M+H⁺), requires 462.1812, found: 462.1807.

HPLC spectra:

HPLC REPORT

Sample Name: cb-1-83-2-2-racemic Column: ad-h

Date: #### Mobile Phase: hex/ipr = 70/30 . . .

No.	PeakNo	ID. Name	R. Lime	PeakHeight	PeakArea	PerCent	
1 2	1 2	Unknown Unknown	31. 407 36. 182	160358.3 141918.8	10343968.6 10509467.2	49. 6032 50. 3968	
Tota	1			302277.1	20853435.8	100.0000	
NO		R. Tim	ie	Peak Area	Percent	Peak Height	
1		31.407		10343969	49.60	160358	
2		36.182		10509467	50.40	141919	

Chiral HPLC report: 3e

HPLC REPORT

Sample Name: cb-1-83-2-1-chiral

```
Date: ####
```


No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1	1	Unknown	31.332	223715.7	14489565.5	84.4093
2	2	Unknown	36.107	36553.3	2676268.8	15.5907
Tota	1			260269.0	17165834.3	100.0000
NO		R. Time		Peak Area	Percent	Peak Height
1		31.332	2	14489566	84.41	223716
2		36.197	1	2676269	15.59	36553

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak ad-h column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 70/30; Flow rate: 0.5 mL/min; tminor = 36.197 min, tmajor = 31.332 min; ee = 69%. [α]_D²⁰ = -59.5 (c = 0.340, CH₂Cl₂).

(E)-1'-(1-benzyl-6-methyl-2-oxoindolin-3-ylidene)-1,3-dioxo-5'-vinyl-1,3-

dihydrospiro[indene-2,3'-pyrazolidin]-1'-ium-2'-ide 3f

A red solid, 78% yield (36 mg), 59% ee. M.p.: 202-205 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.26 (s, 3H, CH₃), 2.33 (dd, J = 0.8 Hz, J = 13.2 Hz, 1H, CH₂), 2.86 (dd, J = 9.6 Hz, 13.2 Hz, 1H, CH₂), 4.90 (d, J = 16.0 Hz, 1H, CH₂), 5.07 (d, J = 16.0 Hz, 1H, CH₂), 5.37 (d, J = 10.4 Hz, 1H, =CH₂), 5.70 (d, J = 16.8 Hz, 1H, =CH₂), 6.37 (ddd, J = 8.0 Hz, 10.4 Hz, 16.8 Hz, 1H, =CH), 6.52 (s, 1H, ArH), 6.68-6.74 (m, 2H, CH, ArH), 7.21-7.32 (m, 5H, ArH), 7.74 (d, J = 7.6 Hz, 1H, ArH), 7.94-7.97 (m, 2H, ArH), 8.09-8.12 (m, 2H, ArH). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 22.1, 33.4, 43.3, 75.7, 82.4, 108.6, 112.8, 117.3, 119.7, 122.3, 122.9, 124.2, 124.4, 127.0, 127.2, 128.6, 136.2, 136.5, 136.66, 136.73, 137.7, 138.5, 141.5, 141.7, 160.8, 197.8, 198.2. IR (CH₂Cl₂) v 3085, 2923, 1709, 1670, 1586, 1541, 1454, 1381, 1329, 1268, 1215, 1158, 1141, 811, 756, 717, 699 cm⁻¹. HRMS (ESI) Calcd. for C₂₉H₂₄N₃O₃ (M+H⁺), requires 462.1812, found: 462.1815.

HPLC REPORT

2	57.391	321749	50.21	3091

Chiral HPLC report: 3f

HPLC REPORT

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak IB-3 column; $\lambda = 254$ nm; eluent: Hexane/Isopropanol = 95/5; Flow rate: 0.7 mL/min; t_{minor} = 47.958 min, t_{major} = 56.903 min; ee = 59%. [α]_D²⁰ = -91.3 (c = 0.227, CH₂Cl₂).

(E)-1'-(1-benzyl-6-methoxy-2-oxoindolin-3-ylidene)-1,3-dioxo-5'-vinyl-1,3dihydrospiro[indene-2,3'-pyrazolidin]-1'-ium-2'-ide 3g

A red solid, 96% yield (46 mg), 78% ee. M.p.: 191-193 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.33 (d, *J* = 12.8 Hz, 1H, CH₂), 2.86 (dd, *J* = 10.0 Hz, 12.8 Hz, 1H, CH₂), 3.68 (s, 3H, CH₃), 4.87 (d, *J* = 15.6 Hz, 1H, CH₂), 5.06 (d, *J* = 15.6 Hz, 1H, CH₂), 5.37 (d, *J* = 10.4 Hz, 1H, =CH₂), 5.69 (d, *J* = 16.8 Hz, 1H, =CH₂), 6.28 (s, 1H, ArH), 6.33-6.42 (m, 2H, CH, =CH), 6.66 (dd, *J* = 8.8 Hz, 8.8 Hz, 1H, ArH), 7.22-7.32 (m, 5H, ArH), 7.79 (d, *J* = 8.4 Hz, 1H, ArH), 7.92-7.94 (m, 2H, ArH), 8.07-8.09 (m, 2H, ArH). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 33.5, 43.4, 55.3, 75.3, 82.1, 96.0, 105.6, 112.5, 113.4, 119.6, 124.1, 124.2, 124.3, 127.1, 127.3, 128.6, 136.2, 136.4, 136.5, 136.6, 139.8, 141.5, 141.7, 159.7, 161.0, 197.9, 198.4. IR (CH₂Cl₂) v 2960, 2923, 1709, 1674, 1617, 1383, 1265, 1185, 1158, 1027, 963, 797, 735, 699, 665 cm⁻¹. HRMS (ESI) Calcd. for C₂₉H₂₄N₃O₄ (M+H⁺), requires 478.1761, found: 478.1763.

HPLC REPORT

Sample Name: cb-1-91-b-racemic Column: IB-3 Velocity (mL/min): 0.7 Date: #### Mobile Phase: hex/ipr = 95/5 Detection Wavelength (nm): 254

	- - - -	0.008 0.006 0.004 0.002 0.002 40.00	45.00	50.00	55.00	60.00	65.	00	70.00 57 87	75.00	80.00	85.00	90.00	95.00
6	名称	保留时间 (分钟)	面积 (微伏*秒)	% 面积	高度 (微伏)	积分类型	含量	单位	峰类型	峰代码	相对 RT (分钟)	RT 比率	开始时间 (分钟)	结束时间 (分钟)
1		71.209	1413002	49.59	8591	bb			未知				69.067	77.967
2	с.	81.196	1436355	50.41	8790	bb			未知			5.5.	79.367	87.317
]	NO		R	. Tim	e	Pe	ak A	Area]	Percen	t	Р	eak Hei	ight
	[7	1.209		14	130	02	2	49.59		8:	591	
2	2		8	1.196		14	363	55	-	50.41		8′	790	

Chiral HPLC report: 3g

HPLC REPORT

Sample Name: cb-1-91-b-chiral Column: IB-3 Velocity (mL/min): 0.7 Date: #### Mobile Phase: hex/ipr = 95/5 Detection Wavelength (nm): 254

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak IB-3 column; $\lambda = 254$ nm; eluent: Hexane/Isopropanol = 95/5; Flow rate: 0.7 mL/min; t_{minor} = 72.245 min, t_{major} = 81.248 min; ee = 78%. [α]_D²⁰ = -90.3 (c = 0.325, CH₂Cl₂).

(E)-1'-(1-benzyl-6-chloro-2-oxoindolin-3-ylidene)-1,3-dioxo-5'-vinyl-1,3dihydrospiro[indene-2,3'-pyrazolidin]-1'-ium-2'-ide 3h

A red solid, 96% yield (46 mg), 65% ee. M.p.: 139-140 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.35 (d, J = 13.2 Hz, 1H, CH₂), 2.87 (dd, J = 9.6 Hz, 13.2 Hz, 1H, CH₂), 4.89 (d, J = 16.0 Hz, 1H, CH₂), 5.05 (d, J = 16.0 Hz, 1H, CH₂), 5.39 (d, J = 10.4 Hz, 1H, =CH₂), 5.73 (d, J = 16.8 Hz, 1H, =CH₂), 6.36 (ddd, J = 8.8 Hz, 10.4 Hz, 16.8 Hz, 1H, =CH), 6.68-6.74 (m, 2H, CH, ArH), 6.84 (dd, J = 1.6 Hz, 8.0 Hz, 1H, ArH), 7.24-7.32 (m, 5H, ArH), 7.77 (d, J = 8.0 Hz, 1H, ArH), 7.95-7.98

(m, 2H, ArH), 8.10-8.13 (m, 2H, ArH). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 33.3, 43.5, 76.2, 82.7, 108.3, 112.0, 118.2, 120.3, 121.5, 123.5, 124.3, 124.5, 127.0, 127.5, 128.7, 132.5, 135.9, 136.1, 136.7, 136.8, 138.9, 141.4, 141.6, 160.5, 197.2, 197.7. IR (CH₂Cl₂) v 2923, 2853, 1712, 1677, 1496, 1470, 1376, 1326, 1270, 1184, 1163, 1121, 963, 724, 663 cm⁻¹. HRMS (ESI) Calcd. for C₂₈H₂₁ClN₃O₃ (M+H⁺), requires 482.1266, found: 482.1268.

HPLC spectra:

HPLC REPORT

Sample Name: cb-1-91-c-racemic Column: IB-3 Velocity (mL/min): 0.7 Date: #### Mobile Phase: hex/ipr = 95/5 Detection Wavelength (nm): 254

Chiral HPLC report: 3h

HPLC REPORT

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak IB-3 column; $\lambda = 254$ nm; eluent: Hexane/Isopropanol = 95/5; Flow rate: 0.7 mL/min; t_{minor} = 51.647 min, t_{major} = 57.904 min; ee = 65%. [α]_D²⁰ = -83.8 (c = 0.85, CH₂Cl₂).

(E)-1'-(1-benzyl-5,7-dichloro-2-oxoindolin-3-ylidene)-1,3-dioxo-5'-vinyl-1,3dihydrospiro[indene-2,3'-pyrazolidin]-1'-ium-2'-ide 3i

A red solid, 39% yield (20 mg), 75% ee. M.p.: 132-135 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.34 (d, *J* = 12.8 Hz, 1H, CH₂), 2.85 (dd, *J* = 9.6 Hz, 12.8 Hz, 1H, CH₂), 5.37-5.44 (m, 3H, CH₂, CH₂, =CH), 5.73 (d, *J* = 16.8 Hz, 1H, =CH₂), 6.33 (ddd, *J* = 8.4 Hz, 9.6 Hz, 18.0 Hz, 1H, =CH), 6.79 (dd, *J* = 9.6 Hz, 9.6 Hz, 1H, CH), 7.02 (d, *J* = 1.0 Hz, 1H, ArH), 7.16 (d, *J* = 7.6 Hz, 2H, ArH), 7.20-7.24 (m, 1H, ArH), 7.26-7.31 (m, 2H, ArH), 7.88 (d, *J* = 2.4 Hz, 1H, ArH), 8.00-8.03 (m, 2H, ArH), 8.13-8.16 (m, 2H, ArH). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 33.3, 44.5, 77.1, 83.0, 111.2, 114.5, 120.88, 120.95, 123.1, 124.5, 124.7, 126.2, 127.0, 127.1, 128.2, 128.5, 132.2, 135.5, 136.9, 137.1, 137.9, 141.4, 141.7, 160.8, 196.9, 197.4. IR (CH₂Cl₂) v 3065, 2925, 2854, 1711, 1674, 1532, 1449, 1316, 1217, 1179, 1126, 977, 855, 726, 664 cm⁻¹. Ms (MALDI) m/z: 516.1 (M+H⁺, 100); HRMS (MALDI) Calcd. for C₂₈H₂₀Cl₂N₃O₃ (M+H⁺), requires 516.0876, found: 516.0866.

HPLC spectra:

HPLC REPORT

Sample Name: cb-1-95-a-racemic Column: IB-3 Velocity (mL/min): 0.7 Date: #### Mobile Phase: hex/ipr = 95/5 Detection Wavelength (nm): 254

	.] [.] ₹ (0.04	J		 31				- - - - - - - - - - - - - -	2000			90.00	100.00
6	名称	保留时间 (分钟)	面积 (微伏*秒)	%面积	高度 (微伏)	积分类型	含里	单位	峰类型	峰代码	相对 RT (分钟)	RT 比率	开始时间 (分钟)	结束时间 (分钟)
1		51.609	3549655	50.49	43074	bV			未知				50.083	59.350
2		60.622	3480497	49.51	39675	Vb			未知				59.350	66.317
	NO		R	. Tim	e	Pe	eak .	Area	.]	Percen	ıt	P	eak He	ight

1	51.609	3549655	50.49	43074
2	60.622	3480497	49.51	39675

Chiral HPLC report: 3i

HPLC REPORT

Sample Name: cb-1-95-a-chiral Column: IB-3 Velocity (mL/min): 0.7 Date: #### Mobile Phase: hex/ipr = 95/5 Detection Wavelength (nm): 254

		0.040							1					
		0.030							199 199 199					
	R	0.020							20					
		0.010							-52.1					
-		0.000	- Nu - u							<u></u>		 -		
		0.00	10.00	20.00) 3	0.00	40.00	50	0.00 60 ∂-2≢	0.00	70.00	80.00	90.00	100.00
96	.64/3	जन्म, 0.0131	2 AU					ĺ						•
6	名称	保留时间 (分钟)	面积 (微伏*秒)	%面积	高度 (微伏)	积分类型	含里	单位	峰类型	峰代码	相对 RT (分钟)	RT 比率	开始时间 (分钟)	结束时间 (分钟)
1		52.107	430986	12.56	6030	BV			未知		2) ()		50.850	57.050
2		58.621	2999580	87.44	38857	VB			未知	16	5		57.050	66.900
N	10		R	. Time	e	Pe	ak A	Area	F	Percen	t	Ре	eak Hei	ght
1			52	2.107		43	098	6	1	2.56		60)30	
2	,		58	8.621		29	995	80	8	57.44		38	3857	

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak IB-3 column; $\lambda = 254$ nm; eluent: Hexane/Isopropanol = 95/5; Flow rate: 0.7 mL/min; t_{minor} = 52.107 min, t_{major} = 58.621 min; ee = 75%. [α]_D²⁰ = -101.4 (c = 0.40, CH₂Cl₂).

(E)-1'-(1-benzyl-5,7-dimethyl-2-oxoindolin-3-ylidene)-1,3-dioxo-5'-vinyl-1,3dihydrospiro[indene-2,3'-pyrazolidin]-1'-ium-2'-ide 3j

A red solid, 80% yield (38 mg), 48% ee. M.p.: 191-193 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.17 (s, 3H, CH₃), 2.23 (s, 3H, CH₃), 2.32 (d, *J* = 13.2 Hz, 1H, CH₂), 2.84 (dd, *J* = 9.6 Hz, 12.8 Hz, 1H, CH₂), 5.19 (d, *J* = 16.8 Hz, 1H, CH₂), 5.32-5.37 (m, 2H, CH₂, =CH₂), 5.67 (d, *J* = 16.8 Hz, 1H, =CH₂), 6.36 (ddd, *J* = 8.4 Hz, 9.6 Hz, 18.0 Hz, 1H, =CH), 6.65 (s, 1H, ArH), 6.82 (dd, *J* = 9.6 Hz, 9.6 Hz, 1H, CH), 7.10 (d, J = 7.6 Hz, 1H, ArH), 7.18-7.23 (m, 1H, ArH), 7.26-7.31 (m, 2H, ArH), 7.70 (s, 1H, ArH), 7.96-7.99 (m, 2H, ArH), 8.12-8.14 (m, 2H, ArH). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 18.7, 20.8, 33.7, 44.8, 76.0, 82.4, 113.0, 118.2, 119.8, 120.4, 121.7, 124.3, 124.5, 125.6, 126.8, 128.7, 131.0, 132.1, 134.0, 136.2, 136.6, 136.8, 138.4, 141.4, 141.7, 161.5, 197.9, 198.5. IR (CH₂Cl₂) v 2922, 2852, 1711, 1668, 1541, 1439, 1329, 1262, 1218, 1159, 980, 796, 732, 696 cm⁻¹. HRMS (ESI) Calcd. for C₃₀H₂₆N₃O₃ (M+H⁺), requires 476.1969, found: 476.1970.

HPLC spectra:

HPLC REPORT

Sample Name: cb-1-95-b-racemic Column: id Velocity (mL/min): 0.5 Date: #### Mobile Phase: hex/ipr = 70/30 Detection Wavelength (nm): 230

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1 2	1 2	Unknown Unknown	79. 757 92. 598	47331.6 51265.0	9208701.5 9397980.6	49. 4914 50. 5086
Tota	1			98596.6	18606682.1	100.0000

NO	R. Time	Peak Area	Percent	Peak Height
1	79.757	9208702	49.49	47332
2	92.598	9397981	50.51	51265

Chiral HPLC report: 3j

HPLC REPORT

Sample Name: cb-1-95-b-chiral Column: id Date: #### Mobile Phase: hex/ipr = 70/30

Velocity (mL/min): 0.5

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1	1	Unknown	81. 773	55066.0	11349098.8	74.2182
2	2	Unknown	94.773	19805.0	3942436.6	25.7818
Total	l			74871.0	15291535.4	100.0000
NO		R. Tim	e	Peak Area	Percent	Peak Height
1		81.773		11349099	74.22	55066
2		94.773		19805	25.78	19805

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak id column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 70/30; Flow rate: 0.5 mL/min; t_{minor} = 94.773 min, t_{major} = 81.773 min; ee = 48%. [α]_D²⁰ = -45.0 (c = 0.55, CH₂Cl₂).

(E)-1'-(1-benzyl-2-oxo-7-(trifluoromethyl)indolin-3-ylidene)-1,3-dioxo-5'-vinyl-1,3-

dihydrospiro[indene-2,3'-pyrazolidin]-1'-ium-2'-ide 3k

A red solid, 52% yield (27 mg), 68% ee. M.p.: 126-128 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.34 (d, J = 13.2 Hz, 1H, CH₂), 2.86 (dd, J = 9.6 Hz, 13.2 Hz, 1H, CH₂), 5.26 (d, J = 17.2 Hz, 1H, CH₂), 5.33-5.38 (m, 2H, CH₂, =CH₂), 5.71 (d, J = 16.8 Hz, 1H, =CH₂), 6.28-6.38 (m, 1H, =CH), 6.81 (dd, J = 9.6 Hz, 9.6 Hz, 1H, CH), 6.99 (dd, J = 8.0 Hz, 8.0 Hz, 1H, ArH), 7.05 (d, J = 7.2 Hz, 2H, ArH), 7.16-7.21 (m, 1H, ArH), 7.25-7.29 (m, 2H, ArH), 7.40 (d, J = 8.0 Hz, 1H, ArH), 7.98-8.01 (m, 2H, ArH), 8.13-8.16 (m, 2H, ArH), 8.24 (d, J = 7.6 Hz, 1H, ArH). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 33.0, 45.2 (q, J = 4.8 Hz), 77.2, 83.1, 111.2, 111.5 (q, J = 32.4 Hz), 120.8, 120.9, 122.1, 122.3, 123.6, (q, J = 270.3 Hz), 124.4, 124.6, 124.7 (q, J = 6.1 Hz), 125.5, 126.0, 126.6, 128.3, 135.4, 135.6, 136.8, 137.0, 137.1, 141.4, 141.7, 161.3, 196.9, 197.5. ¹⁹F NMR (CDCl₃, 376 MHz, CFCl₃) δ -55.0. IR (CH₂Cl₂) v 3028, 2964, 2925, 1711, 1679, 1537, 1448, 1426, 1326, 1261, 1116, 1091, 1018, 795, 739, 718 cm⁻¹. HRMS (ESI) Calcd. for C₂₉H₂₁F₃N₃O₃ (M+H⁺), requires 516.1530, found: 516.1526.

HPLC REPORT

Sample Name: cb-1-95-c-racemic Column: IB-3 Date: #### Mobile Phase: hex/ipr = 95/5

Chiral HPLC report: 3k

HPLC REPORT

Sample Name: cb-1-95-c-chiral Column: IB-3 Velocity (mL/min): 0.7 Date: #### Mobile Phase: hex/ipr = 95/5 Detection Wavelength (nm): 254

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak IB-3 column; $\lambda = 254$ nm; eluent: Hexane/Isopropanol = 95/5; Flow rate: 0.7 mL/min; t_{minor} = 36.570 min, t_{major} = 38.344 min; ee = 68%. [α]_D²⁰ = -38.7 (c = 0.950, CH₂Cl₂).

(E)-1'-(1-(methoxymethyl)-2-oxoindolin-3-ylidene)-1,3-dioxo-5'-vinyl-1,3dihydrospiro[indene-2,3'-pyrazolidin]-1'-ium-2'-ide 3l

A red solid, 65% yield (26 mg), 77% ee. M.p.: 182-184 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.34 (d, *J* = 12.8 Hz, 1H, CH₂), 2.86 (dd, *J* = 9.6 Hz, 12.8 Hz, 1H, CH₂), 3.33 (s, 3H, CH₃), 5.19 (d, *J* = 11.2 Hz, 1H, CH₂), 5.26 (d, *J* = 11.2 Hz, 1H, CH₂), 5.36 (d, *J* = 10.0 Hz, 1H, =CH₂), 5.69 (d, *J* = 16.8 Hz, 1H, =CH₂), 6.29-6.38 (m, 1H, =CH), 6.70 (dd, *J* = 9.6 Hz, 9.6 Hz, 1H, CH), 6.93-7.02 (m, 2H, ArH), 7.17 (dd, J = 7.6 Hz, 7.6 Hz, 1H, ArH), 7.88 (d, J = 7.6 Hz, 1H, ArH), 7.97-7.99 (m, 2H, ArH), 8.10-8.14 (m, 2H, ArH). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 33.3, 56.0, 71.0, 76.2, 77.2, 82.6, 108.2, 119.6, 120.1, 122.1, 122.9, 124.3, 124.5, 127.4, 136.0, 136.6, 136.8, 137.3, 141.5, 141.7, 160.8, 197.4, 197.9. IR (CH₂Cl₂) v 2924, 2853, 2360, 1712, 1677, 1540, 1465, 1344, 1214, 1189, 1083, 915, 761, 721, 670 cm⁻¹. HRMS (ESI) Calcd. for C₂₃H₂₀N₃O₄ (M+H⁺), requires 402.1448, found: 402.1449.

HPLC spectra:

HPLC REPORT

Sample Name: cb-2-3-b-racemic Column: ad-h Velocity (mL/min): 0.5 Date: #### Mobile Phase: hex/ipr = 80/20 Detection Wavelength (nm): 230

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1	1	Unknown	30.873	490002.8	32454721.3	50.3317
2	2	Unknown	39.657	404152.1	32026965.9	49.6683
Tota	1			894155.0	64481687.2	100.0000
NO		R. Tin	ie	Peak Area	Percent	Peak Height
1		30.873		32454721	50.33	490003
2		39.657	7	32026966	49.67	404152

Chiral HPLC report: 31

HPLC REPORT

Sample Name: cb-2-3-b-chiral Column: ad-h

Date: #### Mobile Phase: hex/ipr = 80/20

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1	1	Unknown	30. 565	126359.0	7849555.3	88.3955
2	2	Unknown	39.032	13519.5	1030481.0	11.6045
Tota	1			139878.4	8880036.3	100.0000
NO		R. Tin	ne	Peak Area	Percent	Peak Height
1		30.565	5	7849555	88.40	126359
2		39.032	2	10304813	11.60	13520

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak ad-h column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 80/20; Flow rate: 0.5 mL/min; tminor = 39.032 min, tmajor = 30.565 min; ee = 77%. [α]_D²⁰ = -100.4 (c = 0.575, CH₂Cl₂).

(E)-1'-(1-methyl-2-oxoindolin-3-ylidene)-1,3-dioxo-5'-vinyl-1,3-dihydrospiro[indene-2,3'-

pyrazolidin]-1'-ium-2'-ide 3m

A red solid, 81% yield (30 mg), 84% ee. M.p.: 174-175 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.33 (d, *J* = 12.8 Hz, 1H, CH₂), 2.85 (dd, *J* = 9.6 Hz, 12.8 Hz, 1H, CH₂), 3.29 (s, 3H, CH₃), 5.37 (d, *J* = 10.4 Hz, 1H, =CH₂), 5.69 (d, *J* = 16.8 Hz, 1H, =CH₂), 6.30-6.39 (m, 1H, =CH), 6.69 (dd, *J* = 9.6 Hz, 9.6 Hz, 1H, CH), 6.79 (d, *J* = 7.6 Hz, 1H, ArH), 6.91 (dd, *J* = 7.6 Hz, 7.6 Hz, 1H, ArH), 7.15 (dd, *J* = 7.6 Hz, 7.6 Hz, 1H, ArH), 7.84 (d, *J* = 8.0 Hz, 1H, ArH), 7.94-7.97 (m, 2H, ArH), 8.09-8.11 (m, 2H, ArH). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 26.0, 33.3, 75.9, 77.2, 82.4, 106.9, 119.4, 119.9, 121.5, 122.9, 124.2, 124.4, 127.2, 136.1, 136.6, 136.7, 138.9, 141.4, 141.6, 160.6, 197.6, 198.0. IR (CH₂Cl₂) v 3057, 2955, 2925, 1709, 1668, 1538, 1469, 1353, 1212, 1022, 984, 913, 758, 736, 666 cm⁻¹. HRMS (ESI) Calcd. for C₂₂H₁₈N₃O₃ (M+H⁺), requires 372.1343, found: 372.1343.

HPLC spectra:

HPLC REPORT

1	50.550	1377973	49.14	14217
2	54.692	1426476	50.86	14626

Chiral HPLC report: 3m

HPLC REPORT

NO	R. Time	Peak Area	Percent	Peak Height
1	50.641	164942	7.86	1680
2	54.077	1934608	92.14	19281

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak IB-3 column; $\lambda = 254$ nm; eluent: Hexane/Isopropanol = 95/5; Flow rate: 0.7 mL/min; t_{minor} = 50.641 min, t_{major} = 54.077 min; ee = 84%. [α]_D²⁰ = -113.5 (c = 0.420, CH₂Cl₂).

8. General procedure for the synthesis of 5 and their characterization and spectra charts containing HPLC traces

To a solution of (E)-1'-(1-benzyl-2-oxoindolin-3-ylidene)-1,3-dioxo-5'-vinyl-1,3-dihydrospiro [indene-2,3'-pyrazolidin]-1'-ium-2'-ide **3a** (1.0 equiv) and 1-benzyl-3-isothiocyanato-5-methylindolin-2-one **4** (1.5 equiv) in DCE was stirred in at room temperature for 24 hours. Then, the solvent is directly removed under reduced pressure. The crude product was purified by flash chromatography on silica gel (eluent: PE/EtOAc = 6/1) to furnish the desired product **5** as a light yellow solid.

Compound 5

A light yellow solid, 76% yield (28 mg), 74% ee. M.p.: 301-302 °C. ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.09 (s, 3H, CH₃), 2.41 (dd, J = 12.0 Hz, 12.0 Hz, 2H, CH₂), 4.01-4.14 (m, 3H, =CH,

=CH₂), 4.77 (d, J = 15.6 Hz, 1H, CH₂), 4.79 (d, J = 15.2 Hz, 1H, CH₂), 4.86 (d, J = 15.2 Hz, 1H, CH₂), 4.96-5.06 (m, 2H, CH, CH₂), 6.33 (s, 1H, ArH), 6.41-6.44 (m, 2H, ArH), 6.59 (dd, J = 7.6 Hz, 7.6 Hz, 1H, ArH), 6.89 (d, J = 8.0 Hz, 1H, ArH), 7.04 (dd, J = 7.6 Hz, 7.6 Hz, 1H, ArH), 7.14 (s, 1H, ArH), 7.21-7.36 (m, 10H, ArH), 7.81-7.84 (m, 2H, ArH), 7.96-8.00 (m, 2H, ArH). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 20.9, 39.2, 43.7, 44.3, 63.2, 63.7, 65.3, 70.7, 108.8, 109.1, 115.0, 120.8, 122.0, 123.3, 123.5, 126.2, 127.0, 127.66, 127.77, 127.84, 127.85, 128.6, 128.7, 130.6, 131.4, 132.7, 133.0, 135.0, 135.41, 135.45, 135.47, 138.5, 139.2, 141.1, 143.8, 166.3, 169.4, 171.7, 194.7, 194.9. IR (CH₂Cl₂) v 2960, 2923, 2854, 1719, 1613, 1496, 1467, 1344, 1259, 1080, 1017, 866, 796, 732, 699 cm⁻¹. HRMS (ESI) Calcd. for C₄₅H₃₆N₅O₄S⁺¹(M+H)⁺ requires 742.2483, found: 742.2481.

HPLC spectra:

HPLC REPORT

Sample Name: cb-2-32-racemic Column: IA Velocity (mL/min): 0.7 Date: #### Mobile Phase: hex/ipr = 60/40 Detection Wavelength (nm): 254

NO	R. Time	Peak Area	Percent	Peak Height
----	---------	-----------	---------	-------------

1	15.51	41.084	49.78	34.108	
2	20.53	41.440	50.22	24.966	
2	20.53	41.440	50.22	24.966	

Chiral HPLC report: 3m

HPLC REPORT

Sample Name: cb-2-32-chiral Column: IA Velocity (mL/min): 0.7 Date: #### Mobile Phase: hex/ipr = 60/40 Detection Wavelength (nm): 254

NO	R. Time	Peak Area	Percent	Peak Height
1	15.47	49.343	87.03	40.681
2	20.97	4.274	12.97	7.356

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak IA column; $\lambda = 254$ nm; eluent: Hexane/Isopropanol = 60/40; Flow rate: 0.7 mL/min; t_{minor} = 20.97 min, t_{major} = 15.47 min; ee = 74%. [α]_D²⁰ = 103.0 (c = 1.00, CH₂Cl₂).

9. X-ray crystallographic information of compound 5

The crystal data of racemate **5** have been deposited in CCDC with number 1414548. Empirical Formula: $C_{45}H_{35}N_5O_4S$; Formula Weight: 741.84; Crystal Color, Habit: colorless, Crystal Dimensions: 0.180 x 0.150 x 0.110 mm³; Crystal System: Monoclinic; Lattice Parameters: a = 21.457(3)Å, b = 17.435(3)Å, c = 22.102(3)Å, $\alpha = 90^\circ$, $\beta = 101.295(3)^\circ$, $\gamma = 90^\circ$, V = 8108(2)Å³; Space group: C 2/c; Z = 8; $D_{calc} = 1.215$ g/cm³; $F_{000} = 3104$; Final R indices [I>2sigma(I)] R1 = 0.0540, wR2 = 0.1059.

10. Experimental and results Vibrational Circular Dichroism (VCD) of products 5.

VCD and IR experimental

VCD and IR spectra were measured using a BioTools ChiralIR-2X FT-VCD spectrometer, equipped with a single photoelastic modulation and a mercury cadmium tellurium detector. About 5 mg of compound **5** was dissolved in 150 μ L CDCl₃ and placed in a BaF₂ cell with a pathlength of 75 μ m. Data were acquired at a resolution of 4 cm⁻¹ for 8 h. Besides the chiral sample, the corresponding racemate was measured under the same conditions to obtain VCD baseline.

VCD and IR calculations

The assignment of absolute configuration with VCD method is based on comparisons of the experimental spectra with the theoretical curve obtained by density functional theory (DFT) calculations. Molecular model of (R,R,R)-5 was built and subjected to a conformational analysis using the Monte Carlo protocol at the molecular mechanic force field MMFF94 level with Compute VOA (BioTools Inc., Jupiter, FL). Within a 5 kcal/mol window, 26 energetically distinct conformers were predicted. Geometry optimization and frequencies calculation of the conformers were then carried out using the B3LYP hybrid density functional and 6-31G (d) basis set with Gaussian 09 (Gaussian Inc., Wallingford, CT). Boltzmann-population-weighted composite VCD and IR spectra were then generated by Compute VOA. Theoretical curves for (S,S,S)-5 were deduced from (R,R,R)-5. As enantiomers, their IR curves are exactly the same and VCD spectra are mirror images.

Figure SI-1 and **Figure SI-2** show the experimental and calculated VCD and IR spectra over the range of 1100-1900 cm⁻¹. A scale factor of 0.96 has been applied to the calculated frequencies to overcome a systematic overestimation of the molecular force constant values by DFT. The good agreement between the corresponding spectra of compound **5** and (*S*,*S*,*S*)-**5**, leads to an unambiguous assignment of its absolute configuration as (*S*,*S*,*S*).

Quantitative evaluation of this assignment was achieved by Compare VOA (BioTools Inc., Jupiter, FL). The related results, including the spectral similarities and enantiomeric similarity index (the difference between the VCD spectral similarity of the correct and the incorrect enantiomers, ESI) are listed in **Table SI-2**. Based on the current Compare VOA database, the

confidence level of the (S, S, S) assignment for compound **5** is 97%.

Figure SI-1. Comparison of the experimental VCD spectrum of compound **5** (center) and the calculated VCD spectra of (S,S,S)-**5** (top) and (*R*,*R*,*R*)-**5** (bottom)

Figure SI-2. Comparison of the experimental IR spectrum of compound 5 (top) and the calculated

IR spectra for (S,S,S)-5 and (R,R,R)-5 (bottom)

Table SI-2.	. Evaluatior	is for the	AC assigni	ment of com	pound 5
			0		1

Calculation Method	${}^{a}S_{IR}$	${}^{\mathrm{b}}S_{E}$	°S,-E	^d ESI
DFT//B3LYP/6-31G(d)	77.8	72.0	15.6	56.4

^a Total neighborhood similarity for IR spectra

^b VCD spectral neighborhood similarity for the correct enantiomer

° VCD spectral neighborhood similarity for the incorrect enantiomer

^d Enantiomeric similarity index

11. References

- [1] (a) L.-Y. Mei, Z.-L. Yuan, M. Shi, Organometallics 2011, 30, 6466. (b) L.-Y. Mei, Y. Wei, Q.
- Xu, M. Shi, Organometallics 2012, 31, 7591. (c) H.-P. Deng, Y. Wei, M. Shi, Adv. Synth. Catal.
- 2009, 351, 2897. (d) Z.-L. Yuan, Z.-Y. Lei, M. Shi, Tetrahedron: Asymmetry, 2008, 19, 1339.
- [2] F. Wei, C.-L. Ren, D. Wang, L, Liu, Chem. Eur. J. 2015, 21, 2335.
- [3] a) Z.-Y. Cao, F. Zhou, Y.-H. Yu, J. Zhou, Org. Lett. 2012, 15, 42-45; b) L.-Y. Mei, X.-Y. Tang,
- M. Shi, Org. Biomol. Chem. 2014, 12, 1149-1156.