Electronic Supplementary Information (ESI) for

Porphyrin Chemodosimeters: Synthesis, Electrochemical Redox Properties and Selective 'Naked-eye' Detection of Cyanide Ions

Mandeep K. Chahal and Muniappan Sankar*

Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India

Table of Contents

	Page No
Scheme S1. Synthetic route to dicyanovinyl appended β -substituted porphyrins (1-4).	3
Figure S1. ¹ H NMR spectrum of NiTPP-MN (1).	4
Figure S2. ¹³ C NMR spectrum of NiTPP-MN (1).	4
Figure S3. ¹ H NMR spectrum of H ₂ TPP-MN (2).	5
Figure S4. ¹ H NMR spectrum of NiOPP-MN (3).	5
Figure S5. ¹³ C NMR spectrum of NiOPP-MN (3).	6
Figure S6. ¹ H NMR spectrum of H ₂ OPP-MN (4).	6
Figure S7. MALDI-TOF mass spectrum of NiTPP-MN (1).	7
Figure S8. ESI mass spectrum of H_2 TPP-MN (2).	7
Figure S9. MALDI-TOF mass spectrum of NiOPP-MN (3).	8
Figure S10. MALDI-TOF mass spectrum of H ₂ OPP-MN (4).	8
Figure S11. UV-Vis spectra of NiTPP-X (X = CHO, MN) derivatives in CH_2Cl_2 at 298 K.	9
Figure S12. UV-Vis spectra of H_2 TPP-X (X = CHO, MN) derivatives in CH_2Cl_2 at 298 K.	10
Figure S13. UV-Vis spectra of $H_2OPP-MN(4)$ in toluene and DMSO (supports the nonplanar conformation as compared to $H_2TPP-MN$).	10
Figure S14. (a) The displacement of porphyrin-core atoms in Å from the mean plane and (b) bond lengths of 1 .	11
Figure S15. The HOMO-LUMO variation of various dicyanovinyl appended β -substituted porphyrins: (a) free-base TPP-system (b) Ni-metallated TPP-system (c) free-base OPP-system (d) Ni-metallated OPP-system.	12-13
Figure S16. UV-Vis spectral response of 2 (8 μ M) upon incremental addition of CN ⁻ (1.3 equiv.) in toluene.	14
Figure S17. UV-Vis spectral response of 3 (8 μ M) upon incremental addition of CN ⁻ (2.5 equiv.) in toluene.	14
Figure S18. UV-Vis spectral response of 4 (8 μ M) upon incremental addition of CN ⁻ (2.3 equiv.) in toluene.	15
Figure S19. Job's plot for the porphyrin chemodosimeters.	15

Figure S20. UV-Vis spectra of 2, 3 and 4 in toluene upon addition of various anions.	16
Figure S21. Visual-Colorimetric changes by addition of various anions to 2.	17
Figure S22. Visual-Colorimetric changes by addition of various anions to 3 .	17
Figure S23. Ratiometric absorbance changes of $1(A_{416}/A_{450})$, $2(A_{419}/A_{453})$, $3(A_{434}/A_{462})$ and $4(A_{437}/A_{460})$	18
upon addition of CN ⁻ ions and 10 equiv. of other anions. Blue bars indicate the blank and various anions,	
and red bars indicate the addition of CN ⁻ ions to the interfering anions.	
Figure S24. (a) Changes in absorption spectra of 1 incubated with CN^- ions for 0–160 seconds. (b) Pseudo-first-order kinetic plot.	19
Figure S25. ¹ H NMR spectra of the adduct [3-CN] ⁻ after addition of CN^- ions (1 equiv.) to NiOPP-MN (5 ×	20
10 ⁻³ M).	
Figure S26. ¹ H NMR spectra of the adduct [2-CN] ⁻ after addition of CN ⁻ ions (1 equiv.) to H ₂ TPP-MN (5 ×	20
10 ⁻³ M).	
Figure S27. ¹ H NMR spectra of the adduct [4-CN] ⁻ after addition of CN ⁻ ions (1 equiv.) to H ₂ OPP-MN (5 x	21
10 ⁻⁵ M).	
Figure S28. ESI-MS spectrum of the adduct [3-CN] ⁻ after addition of CN ⁻ ions (1 equiv.) to NiOPP-	21
MN(3).	
Figure S29. Cyclic voltametric studies of 2-4 in absence and presence of [CN ⁻] in CH ₂ Cl ₂ containing 0.1 M TBAPF ₆ at 298 K.	22
Figure S30. DPV traces of 2-4 in absence and presence of $[CN^-]$ in CH ₂ Cl ₂ containing 0.1 M TBAPF ₆ at 298 K	23
Figure S31. Optimized-geometries showing top as well as side views of NiTPP-MN (a and b) and NiOPP-	24
Figure S32. Optimized-geometries showing top as well as side views of H ₂ TPP-MN (a and b) and H ₂ OPP-	24
MN (c and d), respectively.	
Figure S33. Optimized-geometries for 1-CN ⁻ , 2-CN ⁻ , 3-CN ⁻ and 4-CN ⁻ .	25
Figure S34. Pictorial representation of frontier orbitals of NiTPP-MN(1).	26
Figure S35. Pictorial representation of frontier orbitals of anionic species formed after the addition of CN-	26
to NiTPP-MN (1).	
Figure S36. Pictorial representation of frontier orbitals of NiOPP-MN (3).	27
Figure S37 Pictorial representation of frontier orbitals of anionic species formed after the addition of CN ⁻	27
to NiOPP-MN (3).	27
Figure S38. UV-Vis spectral response of 1 (8 μ M) upon incremental addition of CN ⁻ ions (0- 3.15 × 10 ⁻⁴	29
M) in 10% H ₂ O:MeCN.	-
Figure S39. UV-Vis spectral response of 2 (8 μ M) upon incremental addition of CN ⁻ ions (0-3.45 × 10 ⁻⁴ M)	29
in 10% H ₂ O:MeCN.	
Figure S40. UV-Vis spectral response of 3 (8 μ M) upon incremental addition of CN ⁻ ions (0-4.33 × 10 ⁻⁴ M)	30
in 10% H ₂ O:MeCN.	
Figure S41. Absorbance of NiTPP-MN (1), normalized between the minimum absorbance was found at	30
zero equiv of CN^{-} and the maximum absorbance (a) in toluene and (b) in 10% H ₂ O:CH ₃ CN.	
Table S1 Optical absorption spectral data of synthesized porphyrins in CH ₂ Cl ₂ at 298 K.	9
Table S2. Crystal data of NiTPP-MN (1).	11
Table S3. Deviation of β -pyrrole carbons (Å) and 24 core atoms from porphyrin mean plane (Å) and torsion	28
angle (°) between β -pyrrole ring of porphyrin and dicyanovinyl substituent.	-
Table S4. Detection limits in toluene and 10% H ₂ O-CH ₃ CN at 298 K.	30
	1

Scheme S1. Synthetic route to dicyanovinyl appended β -substituted porphyrins (1-4).

Figure S2. ¹³C NMR spectrum of NiTPP-MN (1).

Figure S3. ¹H NMR spectrum of H_2 TPP-MN (2).

Figure S4. ¹H NMR spectrum of NiOPP-MN (**3**).

Figure S5. ¹³C NMR spectrum of NiOPP-MN (3).

Figure S6. ¹H NMR spectrum of H_2 OPP-MN (4).

Figure S7. MALDI-TOF mass spectrum of NiTPP-MN (1).

Figure S8. ESI mass spectrum of H₂TPP-MN (2).

Figure S9. MALDI-TOF mass spectrum of NiOPP-MN (3).

Figure S10. MALDI-TOF mass spectrum of H₂OPP-MN (4).

Porphyrin	B band(s), nm	Q band(s), nm
H ₂ TPP-CHO	430(5.41)	525(4.16), 567(3.75), 604(3.64), 662(3.76)
NiTPP-CHO	427(5.32)	539(4.13), 580(4.01)
H ₂ OPP-CHO	450(4.40)	547(4.18), 594(4.01), 690(3.82)
NiOPP-CHO	444(5.28)	560(4.21), 605(3.97)
H ₂ TPP-MN	401(4.92), 453(5.24)	532(4.31), 580(3.97), 615(3.90), 675(3.98)
NiTPP-MN	385(4.82), 451(5.18)	550(4.07), 606(4.36)
H ₂ OPP-MN	469(5.20)	558(4.22), 608(3.99), 699(3.91)
NiOPP-MN	401(4.79), 465(5.20)	569(4.23), 627(4.32)

Table S1. Optical absorption spectral data of synthesized porphyrins in CH₂Cl₂ at 298 K.

Values in parentheses refer to $\log \varepsilon$ (ε in Mol⁻¹ cm⁻¹)

Figure S11. UV-Vis spectra of NiTPP-X (X = CHO, MN) derivatives in CH_2Cl_2 at 298 K.

Figure S12. UV-Vis spectra of H_2 TPP-X (X = CHO, MN) derivatives in CH₂Cl₂ at 298 K.

Figure S13. UV-Vis spectra of H_2 OPP-MN (4) in toluene and DMSO (supports the nonplanar conformation as compared to H_2 TPP-MN).

Table S2. Crystal data of NiTPP-MN (1)		
Empirical formula	C ₄₈ H ₂₈ N ₆ Ni	
Formula Weight	747.45	
Crystal system	triclinic	
Space group	P -1	
a (Å)	11.701(5)	
b (Å)	13.019(5)	
c (Å)	13.324(5)	
α (°)	75.1	
β (°)	69.33	
γ (°)	85.16	
Volume (Å ³)	1835.3(13)	
Ζ	2	
$D_{cald} (mg/m^3)$	1.353	
Wavelength	0.71073	
Temperature (K)	293 K	
No. of total reflections	8893	
No. of independent	4287	
reflections		
R ^a	0.0515	
R _w ^b	0.1669	
CCDC	1401278	

Torsion angle (C3-C2-C21-C22) = 26.39°

Figure S14. (a) The displacement of porphyrin-core atoms in Å from the mean plane and (b) bond lengths of **1**.

(a) Free-base TPP-system

(b) Ni-metallated TPP-system

(c) Free-base OPP-system

(d) Ni-metallated OPP-system

Figure S15. The HOMO-LUMO variation of various dicyanovinyl appended β -substituted porphyrins: (a) free-base TPP-system (b) Ni-metallated TPP-system (c) free-base OPP-system (d) Ni-metallated OPP-system.

Figure S16. UV-Vis spectral response of 2 (8 μ M) upon incremental addition of CN⁻ ions (1.3 equiv.) in toluene.

Figure S17. UV-Vis spectral response of **3** (8 μ M) upon incremental addition of CN⁻ ions (2.5 equiv.) in toluene.

Figure S18. UV-Vis spectral response of 4 (8 μ M) upon incremental addition of CN⁻ions (2.3 equiv.) in toluene.

Figure S19. Job's plot for the porphyrin chemodosimeters.

Figure S20. UV-Vis spectra of 2, 3 and 4 in toluene upon addition of various anions.

Figure S21. Visual-Colorimetric changes by addition of various anions to 2.

Figure S22. Visual-Colorimetric changes by addition of various anions to 3.

Figure S23. Ratiometric absorbance changes of $1(A_{416}/A_{450})$, $2(A_{419}/A_{453})$, $3(A_{434}/A_{462})$ and $4(A_{437}/A_{460})$ upon addition of CN⁻ ions and 10 equiv. of other anions. Blue bars indicate the blank and various anions, and red bars indicate the addition of CN⁻ ions to the interfering anions.

Figure S24. (a) Changes in absorption spectra of 1 incubated with CN^- ions for 0–160 seconds. (b) Pseudo-first-order kinetic plot.

Figure S25. ¹H NMR spectra of the adduct [**3-CN**]⁻ after addition of CN^{-} ions (1 equiv.) to NiOPP-MN (5 ×10⁻³ M).

Figure S26. ¹H NMR spectra of the adduct [2-CN]⁻ after addition of CN⁻ ions (1 equiv.) to H_2TPP -MN (5 × 10⁻³ M).

Figure S27. ¹H NMR spectra of the adduct [4-CN]⁻ after addition of CN⁻ ions (1 equiv.) to H_2OPP -MN (5 × 10⁻³ M).

Figure S28. ESI-MS spectrum of the adduct **[3-CN]**⁻ after addition of CN⁻ ions (1 equiv.) to NiOPP-MN (**3**).

Figure S29. Cyclic voltametric studies of **2-4** in absence and presence of $[CN^-]$ in CH_2Cl_2 containing 0.1 M TBAPF₆ at 298 K.

Figure S30. DPV traces of **2-4** in absence and presence of $[CN^-]$ in CH_2Cl_2 containing 0.1 M TBAPF₆ at 298 K.

Figure S31. Optimized-geometries showing top as well as side views of NiTPP-MN (a and b) and NiOPP-MN (c and d), respectively.

Figure S32. Optimized-geometries showing top as well as side views of H_2 TPP-MN (a and b) and H_2 OPP-MN (c and d), respectively.

NiOPP-MN(3)-CN⁻

 $H_2OPP-MN(4)-CN^-$

Figure S33. Optimized-geometries for 1-CN⁻, 2-CN⁻, 3-CN⁻ and 4-CN⁻.

номо

Figure S34. Pictorial representation of frontier orbitals of NiTPP-MN (1).

Figure S35. Pictorial representation of frontier orbitals of anionic species formed after the addition of CN^{-} to NiTPP-MN (1).

Figure S36. Pictorial representation of frontier orbitals of NiOPP-MN (3).

Figure S37. Pictorial representation of frontier orbitals of anionic species formed after the addition of CN^{-} to NiOPP-MN (3).

Porphyrin	Deviation(Å)	Torsion angle (°)	
NiTPP-MN	$\Delta C_{\beta} = 0.380$	23.5	
	$\Delta 24 = 0.308$		
H_2 TPP-MN	$\Delta C_{\beta} = 0.292$	27.2	
	$\Delta 24 = 0.135$		
NiOPP-MN	$\Delta C_{\beta} = 1.064$	38.0	
	$\Delta 24 = 0.54$		
$H_2OPP-MN$	$\Delta C_{\beta} = 0.924$	43.7	
	$\Delta 24 = 0.446$		
$NiTPP-MN + CN^{-1}$	$\Delta C_{\beta} = 0.224$	4 77.5	
	$\Delta 24 = 0.277$		
$H_2TPP-MN + CN^-$	$\Delta C_{\beta} = 0.101$	79.1	
	$\Delta 24 = 0.052$		
NiOPP-MN + CN ⁻	$\Delta C_{\beta} = 0.938$	81.1	
	$\Delta 24 = 0.54$		
$H_2OPP-MN+CN^2$	$\Delta C_{\beta} = 0.892$	91.7	
	$\Delta 24 = 0.427$		

Table S3. Deviation of β -pyrrole carbons (Å) and 24 core atoms from porphyrin mean plane (Å) and torsion angle (°) between β -pyrrole ring of porphyrin and dicyanovinyl substituent.

 ΔC_{β} refers mean plane deviation of β -carbon atoms, $\Delta 24$ refers mean plane deviation of 24 core atoms.

Figure S38. UV-Vis spectral response of 1 (8 μ M) upon incremental addition of CN⁻ ions (0-3.15 × 10⁻⁴ M) in 10% H₂O:MeCN.

Figure S39. UV-Vis spectral response of **2** (8 μ M) upon incremental addition of CN⁻ ions (0-3.45 × 10⁻⁴ M) in 10% H₂O:MeCN.

Figure S40. UV-Vis spectral response of **3** (8 μ M) upon incremental addition of CN⁻ ions (0-4.33 × 10⁻⁴ M) in 10% H₂O:MeCN.

Table S4. Detection limits (LOD) in toluene and 10% H₂O:CH₃CN at 298 K.

Porphyrin	LOD (toluene) (in ppm)	LOD (H ₂ O:CH ₃ CN) (in ppm)
NiTPP-MN(1)	0.082	1.64
H_2 TPP-MN(2)	0.023	1.84
NiOPP-MN(3)	0.073	1.76
$H_2OPP-MN(4)$	0.058	-

Figure S41. Absorbance of NiTPP-MN (1), normalized between the minimum absorbance found at zero equiv. of CN^{-} and the maximum absorbance (a) in toluene and (b) in 10% H₂O:CH₃CN.