Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Iron oxide/graphene composites as negative-electrode materials for lithium ion batteries – optimum particle size for stable performance

Qian Sun,^a Xiang Liu,^a Aleksandra B. Djurišić,^a Tik Lun Leung,^b Maohai Xie,^a Alan M. C. Ng,^{c,a} Hang Kong Li,^d Zhaofeng Deng,^b and Kaimin Shih^d

^aDepartment of Physics, University of Hong Kong, Pokfulam Road, Hong Kong.

^bDepartment of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong.

^cDepartment of Physics, South University of Science and Technology of China, Shenzhen, China.

^dDepartment of Civil Engineering, the University of Hong Kong, Pokfulam Road, Hong Kong.

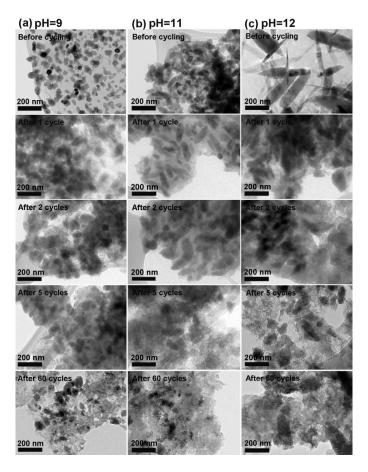


Figure 1, TEM images of Fe_2O_3 / graphene composites prepared at pH=9, pH=11 and pH=12: initial, after 1 cycle, after 2 cycles, after 5 cycles, and after 60 cycles.