Supporting Information

Highly Stable Ni/SiC Catalyst Modified by Al₂O₃ for CO Methanation Reaction

Guojing Jin^{a,b}, Fangna Gu^{b,*}, Qing Liu^b, Xiaoyan Wang^b,

Lihua Jia^{a,*}, Guangwen Xu^b, Ziyi Zhong^c, and Fabing Su^{b,*}

^a College of Chemistry and Chemical Engineering, Qiqihaer University, Qiqihaer 161006, Heilongjiang Province, China

^b State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

^c Institute of Chemical Engineering and Sciences, A*star, 1 Pesek Road, Jurong Island 627833, Singapore

	-		-			
Impurity Elements	Fe	О	Al	_ Physical _ Properties	$\frac{S_{\rm BET}{}^a}{({\rm m}^2~{\rm g}^{-1})}$	$V_{\rm p}^{\ b}$ (cm ³ g ⁻¹)
Content/ Weight %	0.0297	0.0413	0.0104		1	0.003

Table S1 The impurities of SiC measured by XRF and its physical properties

^{*a*} Surface area derived from BET equation.

^b Pore volume obtained from the volume of nitrogen adsorbed at the relative pressure of 0.97.

Fig. S1 N_2 adsorption isotherms (a) and Pore size distribution curves (b) of all the as-calcined samples.

Fig. S2 TEM images of the reduced catalysts: (a) 20Ni5Al75SiC, (b) 20Ni20Al60SiC.

Fig. S3 Catalytic performances of catalysts in CO methanation under different reaction temperatures at 0.1 MPa and WHSV of 120 000 mL g⁻¹ h⁻¹: (a) CO conversion, (b) CH₄ selectivity, and (c) CH₄ yield.

Fig. S4 The wide-angle XRD patterns of 20Ni80SiC, 20N5Al75SiC and 20Ni10Al70SiC after lifetime test and 20Ni80SiC, 20Ni10Al70SiC after hydrothermal stability test.

Fig. S5 TEM images of 20Ni80SiC after lifetime test.