Electronic Supplementary Information (ESI)

Tailored synthesis of CoO_x thin films for catalytic application

Shi-Bin Fan,^{a,b} Guan-Fu Pan,^{a,b} Jing Liang^a and Zhen-Yu Tian^{a,*}

^a Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190, China. ^b University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding author. Tel: +86-010 82543184, Fax: +86-010 82543184; E-mail: tianzhenyu@iet.cn.

Table S1 Experimental conditions

Precursor	Co(acac) ₂
Solvent	Ethanol
Concentration	2.5 mM
Substrates	Planar glass, stainless steel, mesh of stainless steel
Frequency and opening time	4 Hz, 1.2 ms
Evaporation temperature	220 °C
Substrate temperature	350, 400 and 450 °C
System pressure	3.0 kPa
N ₂	0.25 SLM
O ₂	0.75 SLM

Note: SLM refers to standard liter per minute.

With every sample mesh, the catalytic test was performed three times. As shown in Fig. S1, a good reproducibility was observed for all the prepared samples.

Fig. S1 Repeated catalytic tests of C_3H_6 with coated meshes prepared at 350, 400 and 450 °C.

Figure S2 presents the similar results obtained from the blank system and over NCM during the oxidation process of C_3H_6 . The results indicate that NCM is an inert carrier and has negligible effects on the evaluation of the catalytic activity of the deposited TMOs.

Fig. S2 Outlet profiles of C₃H₆ oxidation over NCM and in a blank system.

Figure S3 displays a standard IR spectrum for C_3H_6 with a homemade gas chamber. 575 cm⁻¹, 913 cm⁻¹, 990 cm⁻¹, 2953 cm⁻¹ and 3103 cm⁻¹ are the characteristic absorption peaks of C_3H_6 .

Fig. S3 FTIR transmitance spectrum of C₃H₆ obtained by a self-designed infrared gas pool.

The DRIFTS spectra of CoO_x prepared at 350 and 450 °C were showed in Fig. S4 and S5, respectively. As the temperature increases, the signal of propene (913 cm⁻¹) gets weaker and the signal of CO₂ becomes stronger. In Fig. S4 and S5, redshift of CoO and Co₃O₄ peaks can be observed as temperature increased, this shows the increasing activity of the catalyst, moreover, the random changes of the relative intensity of peaks assigned to CoO and Co₃O₄ consistent with a sustainable redox process.

Fig. S4 In situ DRIFTS spectra of CoO prepared at 350 °C during C₃H₆ adsorption at different temperatures.

Fig. S5 In situ DRIFTS spectra of Co_3O_4 prepared at 450 °C during C_3H_6 adsorption at different temperatures.