Supporting Information

A Stable 3D Porous Coordination Polymer as Multi-Chemosensor to Cr(IV) anion and Fe(III) cation and Its Selective Adsorption of Malachite Green Oxalate Dye

Wen-Huan Huang,^a* Jia-Zhi Li^a, Tong Liu^a, Lu-Sha Gao^a, Min Jiang^a, Ya-Nan Zhang^a, Yao-Yu Wang^b

a College of Chemistry & Chemical Engineering, Shaanxi University of Science & Techology, Xi'an, Shaanxi 710021, China, Tel: +86-29-86168830; Fax: +86-29-86168830; E-mail: huangwenhuan@sust.edu.cn

b Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China.

TABLE OF CONTENTS

(1) THE SUPPORTING FIGURES 11
(2) IR RESULTs
(3) PXRD and TGA RESULTs
(4) LUMINESCENCE SENSING FIGURES5
(5) MOLECULAR FORMULA OF DYES9
(6) CRYSTALLOGRAPHIC DATAS
TABLES12

(1) THE SUPPORTING FIGURES

Figure S1. The 3D structure of **1** along the *b* axis.

Figure S2. The 3D structure of **1** along the *c* axis.

Figure S3. The topology of 1 view along a axis.

Figure S4. The topology of **1** along the *b* axis.

Figure S5. The topology of 1 along the *c* axis.

(2) IR RESULTs

Figure S6. FT-IR spectroscopy of the complex 1-DMF.

Figure S7. FT-IR spectroscopy of the complex 1-DMA.

Figure S8. Powder X-ray diffraction patterns of complex 1-DMF and 1-DMA.

Figure S9. TGA curves of **1-DMF** and **1-DMA**.

(4) LUMINESCENCE SENSING FIGURES

Figure S10. The solid-state fluorescent emssion of 1.

Figure S11. (a) Comparison of the relative luminescence intensities of various metal cations base on **1-DMA**. (b) The visual change on the addition of various metal cations.

Figure S12. (a) Comparison of the relative luminescence intensities of various anions base on **1-DMA**. (b) The visual change on the addition of various anions.

Figure S13. The luminescence emission spectras of complex **1-DMF** suspensions with different metal cations.

Figure S14. The luminescence emission spectras of complex **1-DMA** suspensions with different metal cations.

Figure S15. The luminescence emission spectras of complex **1-DMF** suspensions with different anions.

Figure S16. The luminescence emission spectras of complex 1-DMA suspensions with different

Figure S17. The luminescence intensities of **1-DMA** suspensions with cations concentrations varying from 0 to 1429 ppm.

Figure S18. The luminescence intensities of **1-DMA** suspensions with anions concentrations varying from 0 to 1429 ppm.

(5) MOLECULAR FORMULA OF DYES

Figure S19. The structures of seven kinds of dyes.

Figure S20. The concentrations of dyes in 2 hours after the additions of complexes 1-DMA.

Figure S21. The naked-eye photos of dyes in 2 hours after the additions of complexes 1-DMA.

Figure S22. the UV spectra of seven different kinds of dye.

Figure S23. The UV spectrum of six dyes mixture (exclude MGO) and seven dyes mixture (include MGO)

(6) CRYSTALLOGRAPHIC DATAS TABLES

Complex 1					
Formula	C42 H26 O20 Zn5	$V(Å^3)$	1217.3		
$M_{ m r}$	1177.48	Ζ	1		
Crystal system	triclinic	ho (g cm ⁻³)	1.606		
Space group	ΡĪ	μ (mm ⁻¹)	2.501		
<i>a</i> (Å)	6.327	<i>T</i> (K)	296(2)		
<i>b</i> (Å)	12.671	Goof	1.001		
<i>c</i> (Å)	15.684	$R\left[I > 2\sigma(I)\right]$	$R_1 = 0.0432$		
α (°)	95.69		$wR_2 = 0.1390$		
eta (°)	99.77	R (all data)	$R_1 = 0.0530$		
γ (°)	98.01		$wR_2 = 0.1454$		

Table S1. Crystallographic data and details of diffraction experiments for complexes 1.

Table S2. Selected Bond Lengths (Å) and Angles (deg) for 1.

Complex 1					
Zn(1)-O(2W)	2.007(3)	Zn(1)-O(8)#4	2.102(4)		
Zn(1)-O(1)	2.064(4)	Zn(1)-O(4)#2	2.130(3)		
Zn(1)-O(1W)	2.012(3)	Zn(1)-O(4)#7	2.435(3)		
Zn(2)-O(2)	1.924(4)	Zn(2)-O(1W)	1.981(3)		
Zn(2)-O(7)#5	1.924(4)	Zn(2)-O(2W)#8	1.978(3)		
Zn(3)-O(1W)	2.080(3)	Zn(3)-O(2W)#8	2.200(3)		
Zn(3)-O(5)#2	2.063(3)				
O(1W)-Zn(1)-O(4)#7	78.40(12)	O(4)#2-Zn(1)-O(4)#7	81.89(13)		
O(1W)-Zn(1)-O(8)#4	85.14(14)	O(2W)-Zn(1)-O(4)#2	86.85(13)		
O(8)#4-Zn(1)-O(4)#7	88.69(14)	O(2W)-Zn(1)-O(4)#7	90.32(12)		
O(2W)-Zn(1)-O(8)#4	92.13(14)	O(1)-Zn(1)-O(8)#4	92.97(16)		
O(1W)-Zn(1)-O(4)#2	93.99(13)	O(1W)-Zn(1)-O(1)	94.72(14)		
O(2W)-Zn(1)-O(1)	96.64(15)	O(1)-Zn(1)-O(4)#2	96.51(14)		
O(2W)-Zn(1)-O(1W)	168.44(14)	O(8)#4-Zn(1)-O(4)#2	170.51(15)		
O(1)-Zn(1)-O(4)#7	172.77(12)	O(2W)#8-Zn(2)-O(1W)	91.45(13)		
O(2)-Zn(2)-O(7)#5	113.48(17)	O(2)-Zn(2)-O(2W)#8	118.09(17)		
O(7)#5-Zn(2)-O(2W)#8	111.92(14)	O(2)-Zn(2)-O(1W)	109.20(15)		
O(7)#5-Zn(2)-O(1W)	110.39(15)	O(5)#9-Zn(3)-O(1W)	84.85(13)		
O(1W)-Zn(3)-O(2W)#8	82.89(12)	O(5)#9-Zn(3)-O(2W)#8	93.94(13)		
O(5)#2-Zn(3)-O(2W)#8	86.06(13)	O(5)#2-Zn(3)-O(1W)	95.15(13)		
O(1W)-Zn(3)-O(2W)#11	97.11(12)	O(1W)#10-Zn(3)-O(1W)	180.0		
O(5)#9-Zn(3)-O(5)#2	180.00(19)				

Symmetry transformations used to generate equivalent atoms: #1 x-1,y+1,z; #2 -x+2,-y+1,-z+1; #3 x,y+1,z; #4 -x+2,-y,-z; #5 -x+3,-y,-z; #6 x-1,y,z; #7 x,y-1,z; #8 x+1,y,z; #9 x+1,y-1,z; #10 -x+3,-y,-z+1; #11 -x+2,-y,-z+1.

REFERENCES

[1] Sheldrick G M. SHELXL-97, Program for Crystal Structure Determination, University of Göttingen, Germany, 1997.

[2] Sheldrick G M. SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.