Graphene oxide-based polymeric membranes for broad water pollutants removal

Xiang Zhang^a, Ying Liu^a, Chuangchao Sun^a, Haifeng Ji^a, Weifeng Zhao^{†a,b}, Shudong Sun^a and Changsheng Zhao^{†a}

^a College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.

^b Fiber and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), Teknikringen 56-58 SE-100 44, Stockholm, Sweden.

[†] Corresponding author: Weifeng Zhao, e-mail: zhaoscukth@163.com; Changsheng Zhao, e-mail: zhaochsh70@163.com.

Supplementary Material

Preparation of graphene oxide (GO)

GO was prepared by a modified Hummers method. Briefly, 5 g of graphite, 3.75 g of NaNO₃ and 150 mL of H₂SO₄ were placed in a flask. 20 g of KMnO₄ was slowly added to the flask with gentle stirring in an ice-water bath. Then the mixture was vigorously stirred at 40 °C in a water bath. The viscosity of the mixture will increase dramatically after certain reaction time (usually 12 hours), and then the stirring could be turned off. The reaction was kept for three days, the obtained brown mud was diluted with DI water (500 mL) slowly, and the insoluble precipitations were then removed by centrifugation. The resulted GO solution was dialyzed with DI water for one week, and concentrated by centrifugation.

The fitting results of pseudo-first-order model and pseudo-second-order model.

The parameters of pseudo-infst-order model and pseudo-second-order model.								
	pseudo-first-order model				pseudo-second-order model			
	k ₁ (1/min)	$q_{e(cal)}(mg/g)$	r ²		$k_2(g/mg \cdot min)$	$q_{e(cal)}(mg/g)$	r ²	
M-GO3	8.9×10 ⁻³	16.73	0.98		1.10×10 ⁻³	29.41	0.99	
M-GO6	9.9×10-3	25.68	0.99		6.93×10 ⁻⁴	37.74	0.99	
M-RGO3	10.6×10-3	10.29	0.94		1.07×10-3	14.01	0.98	
M-RGO6	9.4×10 ⁻³	11.99	0.95		7.93×10 ⁻⁴	18.98	0.98	
M-PEI3	8.6×10-3	29.76	0.99		3.61×10-4	35.34	0.99	
M-PEI6	8.6×10 ⁻³	58.82	0.98		1.46×10 ⁻⁴	60.97	0.99	

The parameters of pseudo-first-order model and pseudo-second-order model.

Table S1

The fitting results of intraparticle diffusion model.

		Step I		Step II			
	C (mg/g)	$k_1 (mg/g \cdot min^{1/2})$	r ²	$k_2 (mg/g \cdot min^{1/2})$ r	2		
M-GO3	6.01	1.53	0.98	0.11	0.98		
M-GO6	6.59	1.90	0.99	0.11	0.99		
M-ROG3	-2.87	1.13	0.98	0.06	0.99		
M-RGO6	-3.87	1.54	0.98	0.07	0.99		
M-PEI3	1.02	1.75	0.99	0.27	0.98		
M-PEI6	0.58	2.62	0.99	0.76	0.97		

Table S2The parameter of intraparticle diffusion model.

The fitting results of Langmuir adsorption isotherm.

The parameters of Langhun adsorption isotherm.					
	$q_{max} (mg/g)$	$k_L (L/mg)$	r_L^2		
M-GO3	33.48	0.18	0.99		
M-GO6	43.86	0.17	0.99		
M-RGO3	16.14	0.04	0.99		
M-RGO6	21.63	0.11	0.99		
M-PEI3	36.94	0.14	0.99		
M-PEI6	63.05	0.57	0.99		

Table S3

The parameters of Langmuir adsorption isotherm.

The analysis results of thermodynamics.

The parameters of thermodynamics.								
	ΔH^0	ΔS^0	ΔG^0 (kJ/mol)					
	(kJ/mol)	(J/mol·K)	293.15k	303.15k	313.15k	323.15k	333.15k	r ²
M-GO3	-22.59	-17.07	-17.59	-17.42	-17.24	-17.07	-16.90	0.99
M-GO6	-39.82	-59.53	-22.37	-21.77	-21.18	-20.58	-19.99	0.99
M-RGO3	-23.97	-33.03	-14.29	-13.96	-13.63	-13.30	-12.96	0.99
M-RGO6	-34.12	-59.66	-16.63	-16.03	-15.44	-14.84	-14.24	0.99
M-PEI3	-20.98	-14.85	-16.63	-16.48	-16.33	-16.18	-16.03	0.98
M-PEI6	-30.19	-32.69	-20.61	-20.28	-19.95	-19.62	-19.30	0.98

Table S4 The parameters of thermodynamics.