Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Distinction between Mn(III) and Mn(II) by using a colorimetric chemosensor in aqueous solution

Seul Ah Lee, Jae Jun Lee, Ga Rim You, Ye Won Choi, Cheal Kim*

Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail: <u>chealkim@seoultech.ac.kr</u>

Excited State 1	Wavelength	Percent (%)	Oscillator strength
$H \rightarrow L$	362.50 nm	97 %	0.7023
Excited State 2	Wavelength	Percent (%)	Oscillator strength
$H-1 \rightarrow L+1$	335.52 nm	94 %	0.0004
$H-1 \rightarrow L$		4 %	

Table S1. (a) The theoretical excitation energies and the experimental UV-vis spectrum of **1**. (b) The major electronic transition energies and molecular orbital contributions for **1** (H = HOMO and L = LUMO).

(a)

1	1 \	
1	h١	
	.,,	
۰.	\sim ,	

Excited State 10	Wavelength	Percent (%)	Main character	Oscillator strength
$H-1 \rightarrow L(\alpha)$	552.33 nm	5 %	LMCT	0.0386
H-2 \rightarrow L (α)		5 %	LMCT	
H-1 \rightarrow L+1 (α)		3 %	ICT	
H-6 \rightarrow L (α)		2 %	LMCT	
$H \rightarrow L(\beta)$		58 %	LMCT	
$H-2 \rightarrow L(\beta)$		18 %	LMCT	
Excited State 22	Wavelength	Percent (%)	Main character	Oscillator strength
$H-2 \rightarrow L(\alpha)$	410.69 nm	5 %	LMCT	0.0791
H-11 \rightarrow L (α)		3 %	d-d transition	
H-2 \rightarrow L+1 (α)		2 %	ICT	
$H \rightarrow L+2 (\alpha)$		2 %	ICT	
$H \rightarrow L+2 (\beta)$		22 %	ICT	
$H-2 \rightarrow L(\beta)$		11 %	LMCT	
H-1 \rightarrow L+2 (β)		11 %	ICT	
$H-4 \rightarrow L(\beta)$		10 %	LMCT	

$H-3 \rightarrow L+2 (\beta)$		2 %	ICT	
$H-2 \rightarrow L+2 (\beta)$		2 %	MLCT	
H-1 \rightarrow L+3 (β)		2 %	LMCT	
H-1 \rightarrow L+4 (β)		2 %	ICT	
$H \rightarrow L+3 (\beta)$		2 %	LMCT	
$H \rightarrow L+4 (\beta)$		2 %	ICT	
Excited State 30	Wavelength	Percent (%)	Main character	Oscillator strength
	270 (0	22.0/	LMOT	0 1177
$H-4 \rightarrow L(\alpha)$	3/8.60 nm	22 %o	LMCI	0.11//
$H-4 \rightarrow L(\alpha)$ $H-2 \rightarrow L+1(\alpha)$	3/8.60 nm	22 % 10 %	ICT	0.11//
$H-4 \rightarrow L (\alpha)$ H-2 \rightarrow L+1 (α) H-1 \rightarrow L+1 (α)	3/8.60 nm	22 % 10 % 5 %	ICT ICT	0.1177
H-4 \rightarrow L (α) H-2 \rightarrow L+1 (α) H-1 \rightarrow L+1 (α) H \rightarrow L+3 (β)	378.60 nm	22 % 10 % 5 % 29 %	ICT ICT ICT LMCT	0.1177
H-4 \rightarrow L (α) H-2 \rightarrow L+1 (α) H-1 \rightarrow L+1 (α) H \rightarrow L+3 (β) H-1 \rightarrow L+3 (β)	378.60 nm	22 % 10 % 5 % 29 % 3 %	ICT ICT LMCT LMCT	0.1177
$H-4 \rightarrow L (\alpha)$ $H-2 \rightarrow L+1 (\alpha)$ $H-1 \rightarrow L+1 (\alpha)$ $H \rightarrow L+3 (\beta)$ $H-1 \rightarrow L+3 (\beta)$ $H-1 \rightarrow L+4 (\beta)$	378.60 nm	22 % 10 % 5 % 29 % 3 % 3 %	ICT ICT LMCT LMCT ICT	0.1177
$H-4 \rightarrow L (\alpha)$ $H-2 \rightarrow L+1 (\alpha)$ $H-1 \rightarrow L+1 (\alpha)$ $H \rightarrow L+3 (\beta)$ $H-1 \rightarrow L+3 (\beta)$ $H-1 \rightarrow L+4 (\beta)$ $H \rightarrow L+4 (\beta)$	378.60 nm	22 % 10 % 5 % 29 % 3 % 3 % 3 %	ICT ICT LMCT LMCT ICT ICT	0.1177
$H-4 \rightarrow L (\alpha)$ $H-2 \rightarrow L+1 (\alpha)$ $H-1 \rightarrow L+1 (\alpha)$ $H \rightarrow L+3 (\beta)$ $H-1 \rightarrow L+3 (\beta)$ $H-1 \rightarrow L+4 (\beta)$ $H \rightarrow L+4 (\beta)$ $H-2 \rightarrow L+4 (\beta)$	378.60 nm	22 % 10 % 5 % 29 % 3 % 3 % 3 % 2 %	IMCT ICT LMCT LMCT ICT ICT ICT	0.1177

Table S2. (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1- Mn^{3+} . (b) The major electronic transition energies and molecular orbital contributions for 1- Mn^{3+} (H = HOMO and L = LUMO).

Fig. S1 Job plot for the binding of **1** with Mn^{3+} . Absorbance at 437 nm was plotted as a function of the molar ratio $[Mn^{3+}]/([1] + [Mn^{3+}])$. The total concentrations of Mn^{3+} ions with receptor **1** were 1.0 x 10⁻⁵ M.

Fig. S2 Benesi-Hildebrand plot (absorbance at 500 nm) of **1**, assuming a 1:1 stoichiometry for association between **1** and Mn^{3+} .

Fig. S3 Determination of the detection limit based on change in the ratio (absorbance at 500 nm) of 1 (10 μ M) with Mn³⁺.

(a)

Fig. S4 (a) Colorimetric changes of **1**-Mn³⁺ and 1-Mn³⁺-Cu²⁺ (10 μ M) in absence or presence of CN⁻ (150 equiv). (a) Colorimetric changes of **1**-Mn³⁺ and 1-Mn³⁺-Co²⁺ (10 μ M) in absence or presence of CN⁻ (150 equiv).

Fig. S5 UV-vis absorbance (at 500 nm) of **1** as a function of Mn (III) concentration ([**1**] = 30 μ mol/L and [Mn(III)] = 0.00-10.00 μ mol/L). Conditions: all samples were conducted in buffer-CH₃CN solution (7:3, v/v, 10 mM bis-tris, pH 7.0).

Fig. S6 Job plot for the binding of **1** with Mn^{2+} . Absorbance at 437 nm was plotted as a function of the molar ratio $[Mn^{2+}]/([1] + [Mn^{2+}])$. The total concentrations of Mn^{2+} ions with receptor **1** were 1.0 x 10⁻⁵ M.

Fig. S7 Positive-ion electrospray ionization mass spectrum of 1 (100 μ M) upon addition of 1 equiv of Mn²⁺.

Fig. S8 Benesi-Hildebrand plot (absorbance at 375 nm) of 1, assuming a 1:1 stoichiometry for association between 1 and Mn^{2+} .

Fig. S9 Determination of the detection limit based on change in the ratio (absorbance at 500 nm) of 1 (10 μ M) with Mn²⁺.

(a)

(b)

Fig. S10 The energy-minimized structures of (a) 1 and (b) $1-Mn^{3+}$ complex.

Fig. S11 Isosurface (0.030 electron bohr⁻³) of molecular orbitals participating in the major singlet excited states of **1**.

Fig. S12 Isosurface (0.030 electron bohr⁻³) of molecular orbitals (α spin) participating in the major singlet excited states of **1**-Mn³⁺ complex.

Fig. S13 Isosurface (0.030 electron bohr⁻³) of molecular orbitals (β spin) participating in the major singlet excited states of **1**-Mn³⁺ complex.