Supplementary Information for

The absorption and fluorescence emission spectra of mesotetra(aryl)porphyrin dications with weak and strong carboxylic acids: a comparative study

Saeed Zakavi*a and Saiedeh Hoseinia

^aDepartment of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran. E-mail:zakavi@iasbs.ac.ir

Contents:

S1a: ¹H NMR, ¹³C NMR and UV-Vis spectral data of the porphyrins

S1b: ¹H NMR, ¹³C NMR and UV-Vis spectral data of the porphyrins dications

S2 The UV-Vis spectral data of the free base porphyrins in CH₂Cl₂

S3-1 The UV-Vis spectral data of some electron-rich and electron-deficient free base porphyrins and their dications with CF_3COOH in CH_2Cl_2

 $\textbf{S3-2} \ \text{The UV-Vis spectral data of some electron-rich and electron-deficient free base porphyrins and their dications with HCOOH in CH_2Cl_2$

S3-3 The structure of porphyrins of S3-1 and S3-2

S4 The emission spectra of the free base porphyrins in CH_2Cl_2

S5 The fluorescence spectral data of the free base porphyrins in CH_2Cl_2

S6 Absorption (Q region) and emission spectra of the porphyrin dications with CF_3COOH in CH_2Cl_2 solutions normalized to each other at their respective Q maxima

S7 The emission spectra of the porphyrin dications with HCOOH in CH₂Cl₂

S8 Absorption (Q region) and emission spectra of the $H_4T(2-Cl)PP(HCOO)_2$ in CH_2Cl_2 solution normalized to it's Q maxima

S1a: ¹H NMR, ¹³C NMR and UV-Vis spectral data of the porphyrins

H₂TPP. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -2.77 (2H, br, s, NH), 7.77-7.84 (8H_m and 4H_p, m), 8.26-8.27 (8H_o, d), 8.90 (8H_β, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 120.18 (C_{meso}), 142.20 (C₁), 134.60 (C₂, C₆), 126.73 (C₃, C₅), 127.75 (C₄), 131.5 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 417 (5.79), 513 (4.58), 548 (4.38), 590 (4.30), 647 (4.29).

H₂**T**(4-OMe)**PP.** ¹H NMR (400MHz, CDCl₃, TMS), δ/ppm: -2.72 (2H, br, s, NH), 7.29-7.32 (8H_m, d), 8.15-8.17 (8H_o, d), 8.89 (8H_β, s), 4.13 (12H_{Me}, s); ¹³C NMR (~100MHz, CDCl₃, TMS), δ/ppm: 119.75 (C_{meso}), 134.67 (C₁), 135.62 (C₂, C₆), 112.20 (C₃, C₅), 159.39 (C₄), 131.34 (C_β), 55.61 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max} /nm (logε)= 421 (5.61), 517 (4.32), 555 (4.22), 593 (4.06), 651 (4.11).

H₂**T**(2-Me)**PP.** ¹H NMR (400 MHz, CDCl₃, TMS), δ /ppm: -2.59 (2H, br, s, NH), 7.54-7.74 (8H_m and 4H_p, m, meta and paraposition relative to C atom attached to meso position), 7.99-8.11 (4H_o, m, ortho-position relative to C atom attached to meso position), 8.70 (8H_β, s), 2.01-2.11 (12H_{Me}, m);); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ /ppm: 118.82 (C_{meso}), 139.54 (C₁), 139.63 (C₂), 128.38 (C₃), 129.22 (C₄), 124.21 (C₅), 133.90 (C₆), 141.48 (C_α), 129.22 (C_β), 21.37 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 416 (6.04), 512 (4.74), 545 (4.34), 589 (4.34), 645 (4.25).

H₂**T**(4-Me)**PP.** ¹H NMR (400 MHz, CDCl₃, TMS), δ /ppm: -2.76 (2H, br, s, NH), 7.55-7.58 (8H_m, d), 8.09-8.12 (8H_o, d), 8.86 (8H_β, s), 2.65 (12H_{Me}, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ /ppm: 120.47 (C_{meso}), 139.73 (C₁), 134.92 (C₂, C₆), 127.81 (C₃, C₅), 137.71 (C₄), 131.37 (C_β), 21.57 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 418 (5.89), 516 (4.54), 551 (4.34), 590 (4.18), 647 (4.20).

H₂**T**(2-Cl)**PP.** ¹H NMR (400MHz, CDCl₃, TMS), δ/ppm: -2.62 (2H, br, s, NH), 7.66-7.87 (8H_m and 4H_p, m, meta and paraposition relative to C atom attached to meso position), 8.10-8.26 (4H_o, m, ortho-position relative to C atom attached to meso position), 8.72 (8H_β, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 116.76 (C_{meso}), 137.10 (C₁), 136.94 (C₂), 129.01 (C₃), 129.93 (C₄), 125.32 (C₅), 135.52 (C₆), 140.50 (C_α), 135.39 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logɛ): 416 (5.64), 512 (4.47), 543 (4.07), 587 (4.15), 643 (3.96).

H₂**T**(4-Cl)**PP.** ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -2.83 (2H, br, s, NH), 7.77-7.79 (8H_m, d), 8.15-8.17 (8H_o, d), 8.87 (8H_β, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 119.01 (C_{meso}), 140.37 (C₁), 135.52 (C₂, C₆), 127.07 (C₃, C₅), 134.41 (C₄), 131.64 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 418 (5.79), 513 (4.52), 547 (4.25), 590 (4.16), 647 (4.10).

H₂T(thien-2-yl)P. ¹H NMR (400 MHz, CDCl₃, TMS), δ /ppm: -2.65 (2H, br, s, NH); 7.48-7.51(4H, m); 7.84-7.86 (4H, m); 7.907-7.920 (4H, m); 9.03 (8H, s, β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): (See ESI,† S3-1).

H₂**T**(4-SCH₃)**PP.** ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 8.82 (s,8H,H_β), 8.07 (d, 8H, H_o), 7.58 (d, 8H, H_m), 2.70 (s,12H,CH₃), -2.84 (s,2H,NH); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): (See ESI,† S3-1).

H₂**T**(2-NO₂)**PP.** ¹H NMR (400 MHz, DMSO-d₆, TMS), δ /ppm: - 2.83 (s, 2H, NH), 8.61 (s, 8H, H_β), 8.30 (m, 4H, H_o), 8.45 (m, 8H, H_m), 7.98 (m, 4H, H_p); UV-vis in CH₂Cl₂, λ _{max}/nm (logε): (See ESI,† S3-1).

H₂**T**(**2**,**6**-Cl)**PP.** ¹H NMR (400 MHz, CDCl₃, TMS), δ /ppm: -2.59 (2H, br, s, NH), 7.68 (12H, m, H_{m,p}), 8.66 (8H, s, H_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): (See ESI,† S3-1).

S1b: ¹H NMR, ¹³C NMR and UV-Vis spectral data of the porphyrins dications

H₄**TPP(CF₃COO)**₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 0.276 (4H, br, s, NH), 7.99-8.043 (8H_m and 4H_p, m), 8.616-8.652 (8H_o, m), 8.616-8.652 (8H_β, m); ¹³C NMR (~100MHz, CDCl₃, TMS), δ/ppm: 122.77 (C_{meso}), 139.90 (C₁), 138.52 (C₂, C₆), 128.31 (C₃, C₅), 130.01 (C₄), 145.72 (C_α), 128.31 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 437 (5.83), 600 (4.46), 652 (4.93).

H₄**T**(4-OMe)**PP**(**CF**₃**COO**)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 0.425 (4H, br, s, NH), 7.553-8.573 (8H_m, d), 8.527-8.562 (8H_β, 8H_o, br), 4.195 (12H_{Me}, s); ¹³C NMR (~100MHz, CDCl₃, TMS), δ/ppm: 122.09 (C_{meso}), 133.44 (C₁), 140.01 (C₂, C₆), 114.01 (C₃, C₅), 161.49 (C₄), 146.11 (C_α), 127.75 (C_β), 55.84 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 449 (5.77), 686 (5.07).

 $H_4T(2-Me)PP(CF_3COO)_2$. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -0.954 (4H, br, s, NH), 7.721-7.895 (8H_m and 4H_p, br, meta and para-positions relative to C atom attached to the meso position), 8.181-8.216 (4H_o, br, ortho-position relative to the C atom attached to the meso position), 8.651-8.682 (8H_β, s), 2.208-2.285 (H_{Me}, m); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm:

121.47 (C_{meso}), 138.33 (C_1), 140.86 (C_2), 128.41 (C_3), 129.08 (C_4), 125.39 (C_5), 136.62 (C_6), 145.51 (C_α), 130.54 (C_β), 21.87 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max}/nm (loge): 432 (5.99), 583 (6.46), 633 (4.89).

H₄**T**(4-Me)**PP**(**CF**₃**COO**)₂. ¹H NMR (400MHz, CDCl₃, TMS), δ/ppm: 0.42 (4H, br, s, NH), 7.79-7.82 (8H_m, d), 8.46-8.49 (8H_o, d), 8.55 (8H_β, s), 2.67 (12H_{Me}, s); ¹³C NMR (~100MHz, CDCl₃, TMS), δ/ppm: 122.60 (C_{meso}), 137.56 (C₁), 138.62 (C₂, C₆), 129.12 (C₃, C₅), 140.31 (C₄), 145.85 (C_α), 127.95 (C_β), 21.68 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 442 (5.85), 666 (5.01).

H₂**T**(thien-2-yl)**P**(**CF**₃**COO**)₂. ¹H NMR (400MHz, CDCl₃, TMS), δ/ppm: 1.53 (4H, br, s, NH); 7.78-7.814 (4H, dd); 8.26-8.28 (4H, d); 8.37-8.38 (4H, d); 8.58 (8H, s, β); UV-vis in CH₂Cl₂, λ_{max}/nm (logε): (See ESI,† S3-2).

H₂**T**(4-SCH₃)**PP**(CF₃COO)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ /ppm: 8.77 (s,8H,H_β), 8.33 (d, 8H, H_o), 7.88 (d, 8H, H_m), 3.12 (s,12H,CH₃), 0.2 (s,4H,NH); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): (See ESI,† S3-2).

H₂**T**(2-NO₂)**PP**(**CF**₃**COO**)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ /ppm: 1.25 (s, 4H, NH), 8.53 (s, 8H, H_β), 8.10 (m, 4H, H_o), 8.30 (m, 8H, H_m), 8.10 (m, 4H, H_p); UV-vis in CH₂Cl₂, λ _{max}/nm (logε): (See ESI,† S3-2).

H₂**T**(**2**,**6**-Cl)**PP**(**CF**₃**COO**)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ /ppm: 0.5 (4H, br, s, NH), 7.8-8.0 (12H, m, H_{m,p}), 8.79 (8H, s, H_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): (See ESI,† S3-2).

H₄**T**(4-Cl)**PP**(**HCOO**)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 7.746 (8H_m, d), 8.4 (8H_o, d), 8.674 (8H_β, s); no signal was observed for the NH protons at 20 $^{\circ}$ C, but at -60 $^{\circ}$ C, the NH resonance was observed at δ 0.19 ppm¹.; ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 122.17 (C_{meso}), 138.09 (C₁), 139.59 (C₂, C₆), 129.19 (C₃, C₅), 137.54 (C₄), 145.66 (C_α), 128.94 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 442 (5.65), 662 (4.91).

H₄**T**(2-Cl)**PP**(CF₃COO)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ /ppm: 1.5 (4H, br, s, NH), 7.77-7.938 (8H_m and 4H_p, m, meta and para-positions relative to the C atom attached to the meso position), 8.29 (4H_o, br, ortho-position relative to C atom attached to the meso position), 8.681 (8H_β, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ /ppm: 117.99 (C_{meso}), 137.39 (C₁), 137.72 (C₂), 129.58 (C₃, C₄), 125.88 (C₅), 136.75 (C₆), 146.16 (C_α), 131.04 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 431 (5.76), 580 (4.69), 632 (4.75).

H₄**T**(4-Cl)**PP**(CF₃COO)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 0.392 (4H, br, s, NH), 8.026-8.046 (8H_m, d), 8.518-8.539 (8H_o, d), 8.635 (8H_β, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 121.73 (C_{meso}), 138.11 (C₁), 139.22 (C₂, C₆), 128.81 (C₃, C₅), 137.50 (C₄), 145.67 (C_α), 128.38 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 439 (6.06), 656 (5.16).

H₄**TPP(HCOO)**₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 7.777 (8H_m and 4H_p, d), 8.174 (8H_o, d), 8.828 (8H_β, s); no signal was observed for the NH protons at 20 °C, but at -60 °C, the NH resonance was observed at δ 0.49 ppm¹.; ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 123.26 (C_{meso}), 139.23 (C₁), 138.85 (C₂, C₆), 129 (C₃, C₅), 130.70 (C₄), 145.67 (C_α), 128.78 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 439 (5.75), 604 (4.42), 657 (4.89).

H₄**T**(4-OMe)**PP(HCOO)**₂. ¹H NMR (400MHz, CDCl₃, TMS), δ/ppm: 7.532 (8H_m, d), 8.547 (8H_o, d), 8.56 (8H_β, s), 4.162 (12H_{Me}, s); no signal was observed for the NH protons at 20 °C, but at -60 °C, the NH resonance was observed at δ 0.42 ppm¹.; ¹³C NMR (~100MHz, CDCl₃, TMS), δ/ppm: 122.59 (C_{meso}), 132.67 (C₁), 140.31 (C₂, C₆), 114.62 (C₃, C₅), 162.13 (C₄), 145.99 (C_α), 128.46 (C_β), 55.89 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 452 (5.36), 695 (4.73).

H₄**T**(2-Me)**PP(HCOO)**₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 7.863-7.9 (8H_m and 4H_p, br, meta and para-position relative to C atom attached to meso position), 8.254-8.332 (4H_o, br, ortho-position relative to C atom attached to meso position), 8.73-8.76 (8H_β, br), 2.144-2.203 (H_{Me}, m); no signal was observed for the NH protons at 20 ^oC.; ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 121.69 (C_{meso}), 138.12 (C₁), 140.86 (C₂), 129.53 (C₃), 129.56 (C₄), 125.62 (C₅), 136.54 (C₆), 145.63 (C_α), 130.60 (C_β), 21.03 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 433 (5.79), 582 (4.49), 635 (4.69).

H₄**T**(4-Me)**PP**(**HCOO**)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 7.88-7.91 (8H_m, d), 8.533-8.553 (8H_o, d), 8.7 (8H_β, s), 2.767 (12H_{Me}, s); no signal was observed for the NH protons at 20 ⁰C.; ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 123.1 (C_{meso}), 136.87 (C₁), 138.86 (C₂, C₆), 129.63 (C₃, C₅), 141.34 (C₄), 145.75 (C_α), 128.68 (C_β), 21.62 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max}/nm (logε): 443 (5.88), 672 (5.09).

H₄**T**(2-Cl)**PP(HCOO)**₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 7.92-7.95 (8H_m and 4H_p, br, meta and para-positions relative to the C atom attached to the meso position), 8.4-8.5 (4H_o, br, ortho-position relative to C atom attached to meso position), 8.78-8.826 (8H_β, br); no signal was observed for the NH protons at 20 ^oC.; ¹³C NMR (~100MHz, CDCl₃, TMS), δ/ppm: 119.24 (C_{meso}), 137.83 (C₁), 138.02 (C₂), 129.87 (C₃, C₄), 126.62 (C₅), 136.84 (C₆), 145.57 (C_α), 132.55 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 432 (5.65), 580 (4.41), 631 (4.52).

H₂T(thien-2-yl)P(HCOO)₂. ¹H NMR (400MHz, CDCl₃, TMS), δ/ppm: 7.81-7.83 (4H, dd); 8.38-8.39 (4H, d); 8.43-8.44 (4H, d); 8.69 (8H, s, β); no signal was observed for the NH protons at 20 $^{\circ}C_{-}^{1}$; UV-vis in CH₂Cl₂, λ_{max} /nm (log₂): (See ESI, † S3-2).

H₂**T**(4-SCH₃)**PP**(**HCOO**)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 8.67 (s,8H,H_β), 8.5 (b, 8H, H_o), 8.31 (b, 8H, H_m), 2.73 (s,12H,CH₃); no signal was observed for the NH protons at 20 °C¹; UV-vis in CH₂Cl₂, λ_{max} /nm (logε): (See ESI,† S3-2).

H₂**T**(2-NO₂)**PP**(**HCOO**)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 8.76 (s, 8H, H_β), 8.57-8.67 (m, 4H, H_o), 8.71-8.73 (m, 8H, H_m), 8.19-8.23 (m, 4H, H_p); no signal was observed for the NH protons at 20 $^{\circ}$ C¹; UV-vis in CH₂Cl₂, λ_{max} /nm (logε): (See ESI,† S3-2).

H₂**T**(2,6-Cl)**PP**(**HCOO**)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 7.87-7.90 (12H, m, H_{m,p}), 8.95 (8H, s, H_β,); no signal was observed for the NH protons at 20 $^{0}C^{1}$; UV-vis in CH₂Cl₂, λ_{max} /nm (logε): (See ESI,† S3-2).

$\begin{array}{ c c c c c c c } H_2 TPP & $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$		npnymis			Bands			$\Delta v_{Q(0,0), \text{ Soret}}$
$ \begin{array}{ c c c c c c c } \hline IV & III & II & I \\ \hline IV & III & II & I \\ \hline IV & III & II & I \\ \hline IV & III & II & I \\ \hline IV & III & II & I \\ \hline IV & III & II & I \\ \hline IV & III & II & I \\ \hline IV & III & II & I \\ \hline IV & III & II & I \\ \hline IV & III & II & I \\ \hline IV & III & II & I \\ \hline IV & III & II & I \\ \hline IV & III & II & I \\ \hline IV & III & II & I \\ \hline IV & III & II & I \\ \hline IV & III & II & I \\ \hline IV & IV & III & II & I \\ \hline IV & IV & III & II & I \\ \hline IV & IV & III & II & I \\ \hline IV & IV & III & II & I \\ \hline IV & IV & III & II & I \\ \hline IV & IV & III & II & I \\ \hline IV & IV & III & II & I \\ \hline IV & IV & III & II & I \\ \hline IV & IV & III & II & I \\ \hline IV & IV & III & II & I \\ \hline IV & IV & III & II & I \\ \hline IV & IV & IV & III & II & I \\ \hline IV & IV & IV & III & II & I \\ \hline IV & IV & IV & III & II & I \\ \hline IV & IV & IV & III & II & I \\ \hline IV & IV & IV & III & II & I \\ \hline IV & IV & IV & III & II & I \\ \hline IV & IV & IV & III & II & II & I \\ \hline IV & IV & IV & III & II & II & I \\ \hline IV & IV & IV & IV & III & II & II & I$								(cm ⁻¹)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	So		Soret	IV	III	II	Ι	_
loge5.794.584.384.304.29 f 1.7340.1120.0350.0240.015 $f_{sorel}/f_{Q(0,0)}$ 115.6 f 5175555936518392 $H_2T(4-OMe)PP$ λ (nm)4215175555936518392 $Ioge$ 5.614.324.224.064.11 f 1.5100.0680.0370.0140.014 $f_{sorel}/f_{Q(0,0)}$ 107.9 f 5125455896458535 $Ioge$ 6.045125455896458535 $Ioge$ 6.044.744.344.25 f $f_{sorel}/f_{Q(0,0)}$ 122.8 $H_2T(4-Me)PP$ λ (nm)4185165515906478467	41	$_{2}$ TPP λ (nm)	417	513	548	590	647	8525
f1.7340.1120.0350.0240.015 $f_{Soret}/f_{Q(0,0)}$ 115.655936518392H_2T(4-OMe)PP λ (nm)4215175555936518392loge5.614.324.224.064.114.11f1.5100.0680.0370.0140.0144.11f_{Soret}/f_{Q(0,0)}107.95555896458535H_2T(2-Me)PP λ (nm)4165125455896458535loge6.044.744.344.344.254.11f2.2100.1730.0390.0430.0184.11H_2T(4-Me)PP λ (nm)4185165515906478467	5.7	logɛ	5.79	4.58	4.38	4.30	4.29	
$f_{\text{Soref}}/f_{Q(0,0)}$ 115.6 H_2 T(4-OMe)PP λ (nm)4215175555936518392 $\log \epsilon$ 5.614.324.224.064.11 f 1.5100.0680.0370.0140.014 μ_{10} $f_{\text{Soref}}/f_{Q(0,0)}$ 107.9107.9107.9101.45455896458535 H_2 T(2-Me)PP λ (nm)4165125455896458535 $f_{\text{Soref}}/f_{Q(0,0)}$ 2.2100.1730.0390.0430.018101.4 H_2 T(4-Me)PP λ (nm)4185165515906478467	1.7	f	1.734	0.112	0.035	0.024	0.015	
$H_2T(4-OMe)PP$ λ (nm)4215175555936518392 $log\epsilon$ 5.614.324.224.064.11 f 1.5100.0680.0370.0140.014 $f_{sored}/f_{Q(0,0)}$ 107.9 V V V $H_2T(2-Me)PP$ λ (nm)4165125455896458535 $log\epsilon$ 6.044.744.344.344.25 $f_{sored}/f_{Q(0,0)}$ 122.8 V V V V $H_2T(4-Me)PP$ λ (nm)4185165515906478467	11	$f_{ m Soret}/f_{ m Q(0,0)}$	115.6					
loga5.614.324.224.064.11 f 1.5100.0680.0370.0140.014 $f_{Soret}/f_{Q(0,0)}$ 107.9 V V V V h_2 T(2-Me)PP λ (nm)4165125455896458535 $loga$ 6.044.744.344.344.25 f 2.2100.1730.0390.0430.018 h_{2} T(4-Me)PP λ (nm)4185165515906478467	42	$_{2}$ T(4-OMe)PP λ (nm)	421	517	555	593	651	8392
f1.5100.0680.0370.0140.014 $f_{soret}/f_{Q(0,0)}$ 107.91 $H_2T(2-Me)PP$ λ (nm)4165125455896458535 $\log \varepsilon$ 6.044.744.344.344.25 f 2.2100.1730.0390.0430.018 $f_{soret}/f_{Q(0,0)}$ 122.8111 $H_2T(4-Me)PP$ λ (nm)4185165515906478467	5.6	logɛ	5.61	4.32	4.22	4.06	4.11	
$f_{Soret}/f_{Q(0,0)}$ 107.9 $H_2T(2-Me)PP$ λ (nm)4165125455896458535 $\log \varepsilon$ 6.044.744.344.344.25 f 2.2100.1730.0390.0430.018 $f_{Soret}/f_{Q(0,0)}$ 122.85165515906478467 $H_2T(4-Me)PP$ λ (nm)4185165515906478467	1.5	f	1.510	0.068	0.037	0.014	0.014	
$H_2T(2-Me)PP$ λ (nm)4165125455896458535 $log\epsilon$ 6.044.744.344.344.25 f 2.2100.1730.0390.0430.018 $f_{soret}/f_{Q(0,0)}$ 122.8 V_{soret} V_{soret} V_{soret} $H_2T(4-Me)PP$ λ (nm)4185165515906478467	10	$f_{ m Soret}/f_{ m Q(0,0)}$	107.9					
logs6.044.744.344.344.25f2.2100.1730.0390.0430.018f_{soret/f_Q(0,0)}122.8 \cdot \cdot \cdot H_2T(4-Me)PP λ (nm)4185165515906478467	41	$_{2}T(2-Me)PP$ λ (nm)	416	512	545	589	645	8535
f2.2100.1730.0390.0430.018f_{Soret}/f_{Q(0,0)}122.8122.85165515906478467H_2T(4-Me)PP λ (nm)4185165515906478467	6.0	logɛ	6.04	4.74	4.34	4.34	4.25	
$f_{\text{Soret}} f_{Q(0,0)} = 122.8$ H ₂ T(4-Me)PP λ (nm) 418 516 551 590 647 8467	2.2	f	2.210	0.173	0.039	0.043	0.018	
H ₂ T(4-Me)PP λ (nm) 418 516 551 590 647 8467	12	$f_{ m Soret}/f_{ m Q(0,0)}$	122.8					
	41	$_{2}T(4-Me)PP$ λ (nm)	418	516	551	590	647	8467
$\log \epsilon$ 5.89 4.54 4.34 4.18 4.20	5.8	loge	5.89	4.54	4.34	4.18	4.20	
f 2.710 0.218 0.091 0.050 0.037	2.7	f	2.710	0.218	0.091	0.050	0.037	
$f_{\text{Sored}}/f_{Q(0,0)}$ 73.2	73	$f_{ m Soret}/f_{ m Q(0,0)}$	73.2					
H ₂ T(2-Cl)PP λ (nm) 416 512 543 587 643 8486	41	$_{2}T(2-Cl)PP$ λ (nm)	416	512	543	587	643	8486
logε 5.64 4.47 4.07 4.15 3.96	5.6	loge	5.64	4.47	4.07	4.15	3.96	
f 1.590 0.094 0.014 0.024 0.005	1.5	f	1.590	0.094	0.014	0.024	0.005	
$f_{\rm Sored}/f_{\rm Q(0,0)}$ 318.0	31	$f_{ m Soret}/f_{ m Q(0,0)}$	318.0					
H ₂ T(4-Cl)PP λ (nm) 418 513 547 590 647 8467	41	$_{2}T(4-Cl)PP$ λ (nm)	418	513	547	590	647	8467
logε 5.79 4.52 4.25 4.16 4.10	5.7	loge	5.79	4.52	4.25	4.16	4.10	
f 2.560 0.190 0.062 0.045 0.022	2.5	f	2.560	0.190	0.062	0.045	0.022	
$f_{\text{Sored}}/f_{Q(0,0)}$ 116.4	11	$f_{ m Soret}/f_{ m Q(0,0)}$	116.4					

S2 The UV-Vis spectral data of the free base porphyrins in $CH_2Cl_2{}^a$

^a Oscillator strength; $f = 4.32 \times 10^{-9} \int \varepsilon_{\nu} d\nu$

Porphyrins				Bands			$\Delta v_{Q(0,0), \text{ Soret}}$ (cm ⁻¹)
		Soret	IV	III	II	Ι	
H ₂ T(thien-2-yl)P ^b	λ (nm)	424	521	560	596	660	8433
	logɛ	5.39	4.40	4.28	4.24	4.24	
	f	1.130	0.054	0.021	0.011	0.005	
	$f_{\text{Soret}}/f_{Q(0,0)}$	204					
H ₄ T(thien-2-yl)P(CF ₃ COO) ₂ ^b	λ (nm)	459	-	-	-	723	7955
	logɛ	5.53	-	-	-	4.9	
	Δv^{c}	-1798	-	-	-	-1320	
	f	1.25	0.112	0.035	0.024	0.27	
	$f_{\text{Soret}}/f_{\text{Q}(0,0)}$	4.6					
H ₂ T(4-SMe)PP ^b	λ (nm)	422	517	555	594	651	8336
	logɛ	5.64	4.55	4.46	4.32	4.39	
	f	1.260	0.058	0.035	0.015	0.010	
	$f_{\text{Soret}}/f_{\text{Q}(0,0)}$	120					
H ₄ T(4-SMe)PP(CF ₃ COO) ₂ ^b	λ (nm)	461	-	-	-	692	7241
	logɛ	5.53	-	-	-	4.99	
	Δv^{c}	-2005	-	-	-	-910	
	f	1.57	-	-	-	0.35	
	$f_{\text{Soret}}/f_{\text{Q}(0,0)}$	4.5					
H ₂ T(2-NO ₂)PP ^b	λ (nm)	420	516	550	593	650	8425
	logɛ	5.57	4.66	4.44	4.40	4.27	
	f	1.28	0.095	0.029	0.023	0.005	
	$f_{\text{Soret}}/f_{\text{Q}(0,0)}$	264.5					
I ₄ T(2-NO ₂)PP(CF ₃ COO) ₂ ^b	λ (nm)	431	-	536	583	635	7454
	logɛ	5.62	-	4.47	4.52	4.67	
	$\Delta \nu^{\ c}$	-608	-	475	289	363	
	f	1.27	-	0.057	0.046	0.073	
	$f_{\rm Soret}/f_{\rm Q(0,0)}$	17.4					
$H_2T(2,6-Cl)PP^d$	λ (nm)	417	512	-	606	630	8108
	logɛ	5.24	4.55	-	4.59	4.51	
	f	0.722	0.057	-	0.088	0.033	
	$f_{\text{Soret}}/f_{Q(0,0)}$	21.9					
$H_2T(2,6-Cl)PP(CF_3COO)_2$	λ (nm)	429	-	-	580	612	8467

 $\mbox{\bf S3-1} \mbox{ The UV-Vis spectral data of some electron-rich and electron-deficient free base porphyrins and their dications with CF_3COOH in CH_2Cl_2^a$

logɛ	5.24	-	-	4.76	4.58
Δv^{c}	-608	-	-	740	647
f	0.8	-	-	0.15	0.12
$f_{\rm Soret}/f_{\rm Q(0,0)}$	6.7				

^a See the footnotes of S2. ^b See the Tables and supporting information of [2]. ^c $\Delta \upsilon$ (cm⁻¹) = 10⁷(1/ λ_1 - 1/ λ_2); (λ_1 = the wavelength of the band of the free base porphyrin; λ_2 = the wavelength of the corresponding band of the dication). ^d Prepared and purified according to the literature.³

Porphyrins				Bands			$\Delta v_{Q(0,0), \text{ Soret}}$
		Soret	IV	III	II	I	(cm ⁺)
H ₂ T(thien-2-yl)P	λ (nm)	424	521	560	596	660	8433
	f	1.130	0.054	0.021	0.011	0.005	
	$f_{\text{Soret}}/f_{Q(0,0)}$	204					
H ₄ T(thien-2-yl)P(HCOO) ₂	λ (nm)	460	-	-	-	732	8078
	logɛ	5.53	-	-	-	4.93	
Δv ^b		-1846	-	-	-	-1490	
	f	1.566	-	-	-	0.33	
	$f_{\rm Soret}/f_{\rm Q(0,0)}$	4.74					
H ₂ T(4-SMe)PP	λ (nm)	422	517	555	594	651	8336
	f	1.260	0.058	0.035	0.015	0.010	
	$f_{\rm Soret}/f_{\rm Q(0,0)}$	120					
H ₄ T(4-SMe)PP(HCOO) ₂	λ (nm)	465	-	-	-	706	7341
	logɛ	5.45	-	-	-	5.04	
	$\Delta \nu^{\ b}$	-2191	-	-	-	-1197	
	f	1.35	-	-	-	0.35	
	$f_{\rm Soret}/f_{\rm Q(0,0)}$	3.9					
H ₂ T(2-NO ₂)PP	λ (nm)	420	516	550	593	650	8425
	f	1.28	0.095	0.029	0.023	0.005	
	$f_{\text{Soret}}/f_{\text{Q}(0,0)}$	264.5					
$H_4T(2-NO_2)PP(HCOO)_2$	λ (nm)	431	-	546	582	636	7454
	logɛ	5.63	-	4.47	4.52	4.68	
	$\Delta \nu^{b}$	-608	-	133	319	339	
	f	1.53	-	0.066	0.047	0.039	
	$f_{\text{Soret}}/f_{Q(0,0)}$	39					
H ₂ T(2.6-Cl)PP	λ (nm)	417	512	-	606	630	8108
	f	0.722	0.057	-	0.088	0.033	
	$f_{\text{Soret}}/f_{Q(0,0)}$	21.9					
H ₂ T(2,6-Cl)PP(HCOO) ₂	λ (nm)	425	-	-	594	628	8467
	logɛ	5.11	-	-	4.52	4.41	
	Δv ^b	-451	-	-	333	50	

S3-2 The UV-Vis spectral data of some electron-rich and electron-deficient free base porphyrins and their dications with HCOOH in $CH_2Cl_2^{a,b}$

f	0.81	-	-	-	0.02
$f_{\rm Soret}/f_{\rm Q(0,0)}$	40.5				

^{a,b} See the footnotes of S2 and S3. ^c See S3-3 for the structre of the porphyrins.

S3-3 The structure of porphyrins of S3-1 and S3-2.

S4 The emission spectra of the free base porphyrins in CH₂Cl₂

S5 The fluorescence spectral data of the free base porphyrins in CH_2Cl_2

Porphyrins	H ₂ TPP	H ₂ T(4-OMe)PP	H ₂ T(2-Me)PP	H ₂ T(4-Me)PP	H ₂ T(2-Cl)PP	H ₂ T(4-Cl)PP
Absorption						
$Q_{X10}(\lambda/nm)$	590	593	589	590	587	590
$Q_{X00}(\lambda/nm)$	647	651	645	647	643	647
Splitting $(\Delta v_1/cm^{-1})^a$	1493	1502	1474	1493	1484	1493
Emission						
$Q_{X00}^*(\lambda/nm)$	654 (2.21)	662 (3.55)	652 (1.57)	656 (2.05)	654 (1.07)	652 (1.81)
$\Delta v_{1/2} ({\rm cm}^{-1})$	606	822	798	603	700	513
$Q_{X01}^*(\lambda/nm)$	716 (1.00)	722 (1.00)	714 (1.00)	720 (1.00)	712 (1.00)	718 (1.00)
$\Delta v_{1/2} ({\rm cm}^{-1})$	684	945	785	722	632	662
Splitting $(\Delta v_2/cm^{-1})^b$	1324	1255	1332	1355	1246	1410
$\Delta v_3 = \Delta v_1 - \Delta v_2 \text{ (cm}^{-1}\text{)}$	169	247	142	138	238	83
E ₀₀ (eV) ^c	1.91	1.89	1.91	1.90	1.91	1.91
Stokes shift ($\Delta v/cm^{-1}$)	165	255	166	212	262	118
$\Phi_{\mathrm{f}}{}^{\mathrm{d}}$	0.130	0.280	0.073	0.050	0.031	0.043
τ_1 (ns) ^e	34.42	57.04	22.26	17.86	40.95	20.57
$\tau_2 (ns)^f$	153.57	309.70	89.65	90.33	171.42	101.7
$\tau_3 (ns)^g$	79.35	130.18	52.12	41.55	98.89	48.03
$\Sigma k_1 (\times 10^{-6} s^{-1})^h$	29	17	45	56	24	48
$\Sigma k_2 (\times 10^{-6} \text{ s}^{-1})^i$	6	3	11	11	6	10
$\Sigma k_3 (\times 10^{-6} \text{ s}^{-1})^{j}$	13	8	19	24	10	21
$k_{r1} (\times 10^{-6} \text{ s}^{-1})^k$	3.8	4.9	3.4	2.8	0.7	2.1
$k_{r2} (\times 10^{-6} \text{ s}^{-1})^{1}$	0.8	0.9	0.8	0.6	0.2	0.4
$k_{r3} (\times 10^{-6} \text{ s}^{-1})^{m}$	1.7	2.1	1.4	1.2	0.3	0.9
$k_{nr1} (\times 10^{-6} \text{ s}^{-1})^n$	25.2	12.6	41.7	53.2	23.3	45.9
$k_{nr2} (\times 10^{-6} \text{ s}^{-1})^{\circ}$	6.1	2.3	10.2	10.4	5.6	9.4
k_{nr3} (× 10 ⁻⁶ s ⁻¹) ^p	11.3	5.5	17.6	22.8	9.7	20.1

^a Energy difference between the Q_{X10} and Q_{X00} bands. ^b Energy differences between the Q^*_{X00} and Q^*_{X01} bands. ^c Midpoint of Q_{X00} and Q^*_{X00}

^a Energy difference between the Q_{X10} and Q_{X00} bands. ^b Energy differences between the Q^{*}_{X00} and Q^{*}_{X01} bands. ^c Midpoint of Q_{X00} and Q maxima. ^dBased on a reported value of 0.13 for Q_f of TPP in CH₂Cl₂⁴. ^e $\tau_1^{-1} = 2.880 \times 10^{-9} n^2 \frac{g_l}{g_u} < v^{2>}_f \mathcal{E}(v) dv$. ^f $\tau_2^{-1} = 2.880 \times 10^{-9} n^2$ $\frac{g_l}{g_u} \int \frac{(2v_0 - v)^3}{v} \mathcal{E}(v) dv$. ^g $\tau_3^{-1} = 2.880 \times 10^{-9} n^2 \frac{g_l}{g_u} < v_f^{-3} > \frac{1}{av} \int \frac{\mathcal{E}(v)}{v} dv$ and $v_f^{-3} > \frac{1}{av} = \frac{\int F(v) dv}{\int F(v) v^{-3} dv} \frac{1}{\frac{5-7}{2}}$. ^h $\Sigma k_1 = \tau_1^{-1}$. ¹ $\Sigma k_2 = \tau_2^{-1}$. ^j $\Sigma k_3 = \tau_3^{-1}$. ^k $k_{r1} = Q_f \times \Sigma k_1$. ¹ $k_{r2} = Q_f \times \Sigma k_2$. ^m $k_{r3} = Q_f \times \Sigma k_3$. ⁿ $k_{nr1} = \Sigma k_1 - k_{r1}$. ^o $k_{nr2} = \Sigma k_2 - k_{r2}$. ^p $k_{nr3} = \Sigma k_3 - k_{r38}^{-2}$. **S6** Absorption (Q region) and emission spectra of the porphyrin dications with CF_3COOH in CH_2Cl_2 solutions normalized to each other at their respective Q maxima

S7 The emission spectra of the porphyrin dications with HCOOH in CH₂Cl₂

S8 Absorption (Q region) and emission spectra of the $H_4T(2-Cl)PP(HCOO)_2$ in CH_2Cl_2 solution normalized to it's Q maxima.

- 1. S. Zakavi and M. N. Ragheb, Inorg. Chem. Commun., 2013, 36, 113.
- 2. S. Zakavi, R. Omidyan, L. Ebrahimi and F. Heidarizadi, Inorg. Chem. Commun., 2011, 14, 1827.
- 3. P. Hoffmann, A. Robert and B. Meunier, Bull. Soc. Chim. Fr., 1992, 129, 85.
- 4. M. Bergkamp, J. Dalton and T. Netzel, J. Am. Chem. Soc., 1982, 104, 253.
- 5. S. Strickler and R. A. Berg, J. Chem. Phys., 1962, 37, 814.
- 6. G. N. Lewis and M. Kasha, J. Am. Chem. Soc., 1945, 67, 994.
- 7. P. G. Seybold, M. Gouterman and J. Callis, *Photochem. Photobiol.*, 1969, 9, 229.

8. H. N. Fonda, J. V. Gilbert, R. A. Cormier, J. R. Sprague, K. Kamioka and J. S. Connolly, *J. Phys. Chem.*, 1993, **97**, 7024.