Engineering the NiO/CeO₂ interface to enhance the catalytic performance for CO oxidation

Weixin Zou,^{a,b†} Chengyan Ge,^{c†} Minyue Lu,^{a,b} Shiguo Wu,^{a,b} Yongzheng

Wang,^a Jingfang Sun,^b Yu Pu,^a Changjin Tang,^{a,b} Fei Gao,^{*a,b} Lin

Dong*a,b

^a Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China

^b Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis,

Nanjing University, Nanjing 210093, PR China

° School of Chemistry and Chemical Engineering, Yancheng Institute of Technology,

Yanchen 224051, PR China

† These authors contribute equally.

Corresponding Author

*E-mail: gaofei@nju.edu.cn, donglin@nju.edu.cn Tel: +86-25-83592290 Fax: +86-

25-83317761

Figure S1. TEM and HRTEM images of CeO₂ (a, b) nanorod; (c, d) nanooctahedron; (e, f) nanocube.

Figure S2. Electron diffraction patterns of (a) CeO₂ octahedron, (b) Ni/CeO₂ octahedron; (c) the corresponding dark field image of white spot in the red circle; (d) the corresponding bright field image; (e) the HRTEM image of Ni/CeO₂ octahedron.

Figure S3. Electron diffraction patterns of (a) CeO₂ cube, (b) Ni/CeO₂ cube; (c) the corresponding dark field image of white spot in the red circle; (d) the corresponding bright field image; (e) the HRTEM image of Ni/CeO₂ cube.

Figure S4. CO conversion over CeO₂ catalysts with different shapes.

Figure S5. XRD patterns of Ni/CeO_2 and CeO_2 samples with different shapes.

Figure S6. N₂ adsorption–desorption isotherms of Ni/CeO₂ and CeO₂ samples with different shapes.

Figure S7. XPS spectra of O 1s over Ni/CeO₂ catalysts with different shapes.

Figure S8. H_2 -TPR profiles of Ni/CeO₂ and CeO₂ with different shapes.

Figure S9. In-situ CO-adsorption DRIFTS of Ni/CeO₂ catalysts with different shapes.

Table S1. Surface area, crystallite size, lattice parameter, $I_{605+1172}/I_{460}$ in Raman spectra and turnover frequency (TOF_{CO}) at 120 °C of Ni/CeO₂ and CeO₂ samples,

respectively.

Samples	S _{BET}	Grain size	Lattice parameter	I ₆₀₅₊₁₁₇₂ /I ₄₆	TOF _{CO} ^a
	(m^{2}/g)	(nm)	(Å)	0	(h ⁻¹)
Ni/CeO ₂ -r	64	12.8	5.4052	0.32	35.2
Ni/CeO ₂ -o	84	16.6	5.4050	0.21	10.1
Ni/CeO ₂ -c	30	24.8	5.4011	0.12	0.5
CeO ₂ -r	66	11.5	5.4133	0.054	
CeO ₂ -o	85	12.9	5.4064	0.051	
CeO ₂ -c	32	24.6	5.4022	0.046	

a: $TOF_{CO} = P \cdot Sv \cdot C_{CO} \cdot X_{CO}/R \cdot T \cdot C_{Ni}$, in which P was the atmospheric pressure, C_{CO} was the molar CO concentration at the inlet, Sv was the space velocity, X was the CO conversion and C_{Ni} was the molar concentration of surface Ni atoms determined by XPS.