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Fig. S1. GC-MS spectrums of (a) ET and heavy residue cutting at (b) 200 °C; (c)
250 °C; (d) 300 °C.

For better classification of the fractions in the ethylene tar and the derived heavy
cuts, the main components in these aromatic materials were identified by GC-MS, as
shown in Fig. S1. The strong peaks in the spectrums were marked with sequential
numbers from the starting retention time to the end. The possible structures
corresponding to these peaks were listed in Table S1. It was found that most of the
species less than two rings of the molecule were distilled out from the original ET

which led to more condensed structure of the heavy residue.
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Table S1. Possible components detected by GC-MS in heavy residue of ET

Peak Representative | Retention time (min) Area percentage (%)
Name or type
No. structure From To ET [ LF-200 | LF-250 | LF-300 | HC-200 | HC-250 | HC-300
z
1 2-Methylstyrene [5/ 1.85 1.95 1.59 1.97 1.39 1.49 0 0 0
2 Indene 226 | 236 | 298 | 353 | 298 | 295 | 0 0 0
3 (1-Methyl-1.2- @*\cé 3.53 378 | 434 | 580 | 505 | 505 0 0 0
propadienyl)benzene
4 Naphthalene 4.22 439 | 2367 | 3045 | 2689 | 2359 | 0 0 0
9.
5 | Methylnaphthalene 6.88 708 | 1443 | 1970 | 17.17 | 1517 | 0 0 0
1-
6 7.26 743 | 111 | 1503 | 1336 | 1147 | 0 0 0
Methylnaphthalene
7 Bibenzene 8.89 9.03 | 199 | 240 | 229 | 193 0 0 0
8 | 1-Ethylnaphthalene 9.22 938 | 239 | 328 | 3.03 | 266 0 0 0
2,6-
9 | Dimethyhaphthalen 949 | 965 | 199 | 285 | 267 | 221 | 0 0 0

ESI3




€
1.7-
10 | Dimethylnaphthalen 979 | 1000 | 550 | 698 | 670 | 545 0 0
€
2,3-
11 | Dimethylnaphthalen 1020 | 1037 | 213 | 267 | 249 | 220 | 0 0
€
13-
12 | Dimethylnaphthalen 1052 | 1066 | 1.08 | 135 | 143 | 193 0 0
€
13 Acenaphthene 0.0 112 | 1124 | 154 | 166 | 192 | 177 0 0
14 Fluorene 1310 | 1325 | 144 | 098 | 173 | 145 | 201 0
15 |  Methylfluorene 1519 | 1564 | 220 | 0 285 | 210 | 459 0
16 Anthracene O 1656 | 1675 | 550 | 137 | 726 | 564 | 17.17 | 188
17 Phenanthrene @GQ 1675 | 1692 | 057 | 0 079 | 107 | 260 | 579
I- (2
18| \ethylphenanthrene | <0~ 1837 | 1851 | 112 | 0 0 0 432 | 127
19 9-Methylanthracene OOO 18.51 18.60 1.07 0 0 2.12 4.05 1.52
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enzo|dae, uorene . . . . .
20 | Benzo[defIfl 080 18.65 | 1877 | 0.56 0 282 | 276 0
21 2 18.77 18.84 | 0.81 0 348 | 0.99 0
Methylphenanthrene
22 | 2-Methylanthracene 18.84 | 1894 | 112 357 | 472 | 3.73 0
2- J
2 19. 19. 51 : 2.1 .

3 | Phenylnaphthalene OO 9.56 9.70 | 0.5 0.66 8 | 0.96 0
24 | Ethylphenanthrene QOQ 2040 | 20.82 | 2.00 3.05 | 9.02 | 829 0
25 Fluoranthene 008 2082 | 2094 | 0.71 0 341 | 367 | 094
26 Pyrene é‘g 2152 | 2167 | 1.87 245 | 924 | 976 5.02

A
27 | 9-Vinylanthracene OO0 2174 | 21.87 | 021 0 073 | 123 1.96
28 | 2,3-Benzofluorene O’OO 2249 | 2262 | 032 0 140 | 2.15 1.24
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29 Methylpyrene OOOO 22.71 23.72 2.42 16.18 27.74 29.22
30 Benzanthracene OO‘O 25.89 26.12 0.89 4.47 9.85 15.84
31 Methylchrysene O‘OO 27.33 2791 0.94 3.56 9.35 18.12
32 Benzo[e]pyrene OO‘O 29.63 29.89 | 0.38 145 | 3.20 8.51
33 Perylene 0'0 30.73 30.88 | 0.26 1.04 2.43 7.78
O~
Benzo[b]fluoranthen O
34 . Y 30.94 31.13 0.35 1.58 3.42 9.25
13H-
35 Dibenzo[a, h]fluoren OO"O 32.76 32.96 0 0 0 2.10
(§
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Table S2. Elemental composition of the parent ethylene tar and the derived HCs

Elemental analysis (wt.%)

Samples C 0 o C/HP

ET 92.15 7.20 0.65 1.07
HF-200 93.37 6.29 0.34 1.24
HF-250 93.76 5.94 0.30 1.32
HF-300 94.21 5.51 0.28 1.42

Nitrogen and Sulfur were not found in all of the samples
2 By difference.
b Carbon/hydrogen atomic ratio.

The elemental composition revealed that ET and its derived heavy cuts were
almost in absence of N and S which make them suitable precursors for preparation of
high performance mesophase pitch. The lower O content of the HCs with respect to that
of ET indicated that these distillation cuts are in less hetero-functional groups. The C/H

atomic ratio of the HCs was increased with the increasing of distillation temperatures.
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Fig. S2. Thermogravimetric (TG) curves of ET and the derived HCs
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Fig. S3. Viscosity-temperature curve of HC-250
The rheological behavior of HC-250 was studied by high temperature rheometer, as
shown in Fig. S3. The viscosity initially decreases with the increasing of temperature
and keeps relatively constant between 150 °C and 450 °C, and then sharply increases at

temperatures above 450 °C. This sudden increase of the viscosity should be mainly
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attributed to the severe volatilization and polymerization of the small molecules. More
useful details can be found by careful checking the viscosity curve near the end constant
stage, as shown in the inset pattern of Fig. S3. It was noted that the viscosity of the
molten HC-250 exhibit a gradual slight increase in the temperature from 360 °C to 400
°C, which should be due to the tender polymerization reaction. Such temperature region
was an ideal scope for the mesophase pitch preparation. In the light of this result,
temperatures of 360 °C, 380 °C and 400 °C were applied for the carbonization of HC-

250.
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Fig. S4. TG curves of the pitches prepared from HC-250 under different conditions
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Fig. S5. Thermomechanical (TMA) curves of the prepared pitches
Fig. S5 shows the softening point of the prepared pitch determined by TMA analysis.
TMA curve recorded the dimensional change of the pitch samples with the increasing of
temperature. The softening point was determined from the intersection of tangents

before and after the penetration.
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