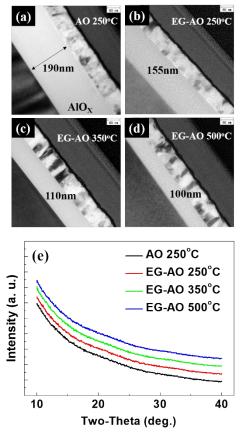
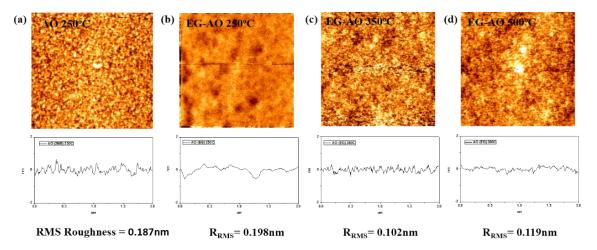
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

(Supplementary Information)

Space Charge-Induced Unusually-High Mobility of Solution-Processed Indium Oxide Thin Film Transistor with Ethylene Glycol Incorporated Aluminum Oxide Gate Dielectric


Hyungjin $Park^{\ddagger a}$, Yunyong $Nam^{\ddagger a}$, Jungho Jin^b, and Byeong-Soo Bae^{a*}.

^aLaboratory of Optical Materials and Coating (LOMC), Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseonggu, Daejeon 305-701, Korea.


^bMultiscale Hybrid Materials Laboratory (MHML), School of Materials Science and Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 680-749, Korea

*Corresponding author. E-mail address: bsbae@kaist.ac.kr

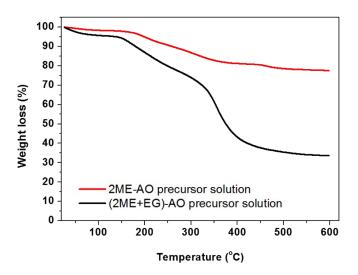

[‡]Both Hyungjin Park and YunYong Nam contributed equally.

Fig. S1. Cross sectional TEM images of the gate dielectric layer: (a) AO 250oC, (b) EG-AO 250oC, (c) EG-AO 350oC, and (d) EG-AO 500oC. (e) XRD spectra of AO and EG-AO gate dielectric layers annealed at various temperatures.

Fig. S2. AFM images and line profiles of (a) AO 250°C, (b) EG-AO 250°C, (c) EG-AO 350°C, and EG-AO 500°C gate dielectric layer.

Fig. S3. TGA results of AO precursor solution (only 2-ME for solvent) and EG-AO precursor solution (both 2-ME and EG) after drying $120\,^{\circ}$ C.