Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information for

"Facile Synthesis and High Formaldehyde-sensing Performance of

NiO-SnO₂ Hybrid Nanospheres"

Guochen Zhang,^a Xue Han,^a Weiwei Bian^b Jinhua Zhan,^a and Xicheng Ma *^a

^a School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China

^b Medical Chemistry Staff Room, Weifang Medical University, Weifang 261053, Shandong, PR China

Corresponding author. Tel: +86 531 88392430; fax: +86 531 88564464. E-mail address: maxch@sdu.edu.cn

S1:

Fig.S1: (a) SEM image of pure porous SnO_2 nanospheres; (b) SEM image of NiO-doped SnO_2 nanospheres.

Fig.S2: Typical nitrogen adsorption–desorption isotherm and BJH pore size distribution plots (inset) of pure porous SnO_2 nanospheres (a) and NiO-doped SnO_2 nanospheres (b).

Fig.S3: The corresponding relationships between the response and the concentrations of formaldehyde at 100° C.

S4:

Fig.S4: The electrical resistance of pure porous SnO_2 nanospheres (red) and NiO-doped SnO_2 nanospheres (black) in air at different temperatures.